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ABSTRACT
Attackers may seek to manipulate recommender systems in
order to promote or suppress certain items. Existing de-
fenses based on analysis of ratings also discard useful in-
formation from honest raters. In this paper, we show that
this is unavoidable and provide a lower bound on how much
information must be discarded. We use an information-
theoretic framework to exhibit a fundamental tradeoff be-
tween manipulation-resistance and optimal use of genuine
ratings in recommender systems. We define a recommender
system to be (n, c)-robust if an attacker with n sybil iden-
tities cannot cause more than a limited amount c units of
damage to predictions. We prove that any robust recom-
mender system must also discard Ω(log n

c
) units of useful

information from each genuine rater.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, Reliability

Keywords
Recommender systems, manipulation-resistance, shilling, in-
formation loss

1. INTRODUCTION
Content posted on the Internet is not of uniform quality,

nor is it equally interesting to different audiences. Recom-
mender systems guide people to items they are likely to like,
based on their own and other people’s subjective reactions.

Authors and other parties often want to direct attention
to particular items. Google, Yahoo!, and others channel this
into a multi-billion dollar advertising marketplace. But to
the extent that people rely on recommender systems to guide
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their attention, there are also natural incentives for promot-
ers to manipulate the recommendations. An attacker may
rate strategically rather than honestly and may introduce
multiple entities, sometimes called sybils or shills [11, 6], to
rate on behalf of the attacker.

The general scenario we analyze is that a sequence of
raters rate an item, and then a prediction is made about
a target person’s reaction to the item. We will refer to
people’s opinions generically as ratings, whether users ex-
plicitly enter them, in the form of ratings or tags, or the
system infers them from implicit behavioral indicators such
as purchases, read times, bookmarks, or links.

Some of the raters are honest; they acquire private infor-
mation about each item and report it honestly. Some are
sybils under the control of an attacker, who reports fake
ratings to manipulate the predictions. A recommender sys-
tem combines the ratings it has received so far to predict
whether a target person will like each item. For example, an
additional positive rating might increase the predicted prob-
ability that the target will like the item, while an additional
negative rating might reduce the predicted probability. In
order to personalize predictions and to resist manipulation,
the recommender may allow some raters to influence the
prediction more than others, depending on each rater’s pat-
tern of ratings of other items and how useful those ratings
have been.

Resnick and Sami [14] presented a particular manipulation-
resistance algorithm, the Influence Limiter, that can be over-
laid on any recommender. It gives only a tiny influence
to a new entity, then increases that influence as the entity
provides informative ratings. The algorithm is provably re-
sistant to any attack involving a bounded number of sybils.
The influence limits, however, create an inefficiency: the rec-
ommender throws away information from new raters who are
honest and informative but who have not yet proven them-
selves to be so.

Several other authors have suggested using statistical met-
rics on ratings to distinguish “attack” identities from “reg-
ular” identities, and eliminate the former [3, 12, 7, 15, 8].
Mobasher et al. [9] survey this literature and classify at-
tack strategies. Any process of weeding out attackers based
on the distribution of their ratings, however, risks throwing
away information from informative raters who are misclas-
sified as attackers.

This paper asks whether the information losses incurred
in these approaches are necessary. Is there a fundamental
tradeoff between resistance to manipulation by an attacker
with a large but bounded number of sybils, and use of infor-
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mation from informative raters? The answer is yes. Indeed,
preventing damage by an attacker who merely injects noise
in the form of random guesses requires discarding the same
order or magnitude of information as that discarded by the
Influence Limiter algorithm.

We evaluate a recommender’s predictions by applying a
scoring rule or loss function that compares the predictions
made to the eventual evaluations that a target user gives
to the items. The information loss of a recommender is the
expected increase in loss from using it rather than an ideal
recommender.

We prove two variants of an information loss lower bound.
The first describes how many ratings a manipulation-resistant
algorithm must monitor before it allows a rater to have a
large influence on a person’s recommendation. The second
describes the minimum information loss per honest rater
that a manipulation-resistant algorithm must incur in the
worst case. It is a function of the maximum number of sybils
that the algorithm will be resistant to, and of the maximum
damage they can be allowed to cause. Thus, an immediate
consequence is that no scheme can be resistant to manipu-
lation by an unbounded number of sybils without throwing
away all information from honest raters.

2. THE MODEL
In this section, we detail and justify a formal model that

enables the analysis of manipulation-resistance as well as in-
formation efficiency of recommender algorithms. We present
the model in three stages. In section 2.1, we introduce a for-
mal model of a recommender’s predictions and an informa-
tion-theoretic measure of the error in those predictions. Sec-
tion 2.2 provides a formal model of the information that hon-
est raters acquire and reveal to the recommender through
their ratings. Section 2.3 introduces an attack model, a
measure of the damage that an attacker causes in terms of
increased error of the predictions the recommender gener-
ates, and a formal definition of (n, c)-robustness.

2.1 Predictions and Scores
The output of the recommender is a prediction about the

reaction that a particular target person will have to an item.
For simplicity, we assume that a prediction is expressed as
a probability that the target will like an item, and a tar-
get eventually makes a binary report of liking the item or
not. The binary reports do not limit the generalizability
of our results: any scheme that is resistant to manipula-
tion of predictions about finer-grained reports from targets
must also be resistant to manipulation of predictions over
more-restricted binary reports.1

More formally, there is a space Ω of possible states (item
types) and a label space L = {HI,LO} of possible responses
to an item from a target. As we shall see in the next section,
we can, without losing generality, confine all uncertainty in
the model to uncertainty about the state; the state deter-

1Our model generalizes naturally to systems where targets
select from a fixed set of labels, such as 1-5 stars. In that
case, a recommender would have to predict the probability
of each label being chosen (e.g., 30% chance of 5 stars; 20%
chance of 4; 50% chance of 3). Many existing recommenders
predict only the mean (e.g., 3.8), which could be extended
in a variety of ways to predict probabilities for each of the
individual labels; our lower bound implies a limit on the
effectiveness of any such extension.

mines the reactions of all raters and potential targets with
certainty. In particular, for each ω ∈ Ω there is a corre-
sponding value l(ω) ∈ HI,LO that describes the target’s
reaction to items in that state. A prediction expresses the
probability q ∈ [0, 1] of a HI label.

Since predictions are probabilistic, they are not simply
right or wrong. A prediction that assigns a higher probabil-
ity to the outcome that occurs is more correct, or has less
error, than one that assigns a lower probability. We employ
the quadratic scoring rule to assign a loss or error score to
a prediction, after the target reports liking the item or not.
Formally:

L(HI, q) = −(1 − q)2; L(LO, q) = −q2

Note that the loss or error is 0 when an extreme prediction
of 0 or 1 is made and the target agrees with the prediction.
The worst error of −1 occurs when an extreme prediction
is made that the target disagrees with. This error measure
corresponds to using the expected squared error (the vari-
ance) as a measure of uncertainty, which has a long history
in statistics. It also corresponds to the use of mean squared
error as a measure of prediction accuracy in recommender
systems, though only for systems that make predictions on
a 0-1 scale and have targets report binary outcomes.

2.2 Partial Information Model
We now proceed to define the damage of an attacker and

the information loss of a recommender system. Intuitively,
the damage is the increase in expected error score of the
predictions made with the attacker present over those made
without the attacker. The information loss is the increase
in the expected error score of the predictions made by the
actual recommender over those made by an ideal recom-
mender.

More precise definitions, however, depend on a specifica-
tion of the environment of a sequence of item ratings. How
much contribution or damage a rater will make may depend
on how much information other raters will provide. We need
a model of the partial information provided by each addi-
tional rater. We use a standard model of information par-
titions, consistent with the model in [14], though we have
simplified some of the notation and adjusted the exposition.

There is a set I of items to be rated. The state ω ∈ Ω
of each item i ∈ I is drawn independently according to a
distribution defined by probability mass function p : Ω →
[0, 1] that gives the relative likelihood of different states.

There is a set J of raters. Each rater r who evaluates an
item receives a signal, some partial information about the
item. The state ω determines with certainty the signal that
rater r receives, but many states may produce the same
signal.2 Thus, each realized signal picks out a subset of
Ω, the set of states that would cause that rater to receive
that signal. Subsets of states yielding different signals are
non-overlapping and exhaustive (in each state the rater sees
exactly one signal) so they form a partition.

For the purposes of analyzing the information available to

2Some readers may be more familiar with a model of partial
information where a state determines a probability distribu-
tion over signals for each rater, rather than a fixed signal. In
our model, there would instead be more states, each corre-
sponding to one of the possible realized signals; the relative
likelihood of the states would correspond to the probability
distribution over signals in the other model.
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an ideal recommender, we assume that a rater’s report fully
reveals the component Ω. We do not model explicitly the
mechanics of how a rater reports (e.g., on a 1-5 scale). In
practice, the inability for a rating to reflect all the private
information the rater has acquired may be one source of
information loss for a recommender.

Different raters may notice different things about items or
have different tastes. We model this as each rater r having
a type π(r), where π(r) is a partition of Ω into components
corresponding to the different signals that rater r could re-
ceive. Let Π denote the space of all possible rater types.

A rater sequence X = (r1, i1), (r2, i2), · · · , (rT , iT ) speci-
fies, for each time period t, the unique identifier for a rater
rt who will rate which item it. Note that the same item may
appear multiple times (it1 = it2), and the same rater may
appear multiple times (rt1 = rt2), but each pair is distinct
(i.e., each rater examines each item only once). We denote
the subsequence consisting of the first t time steps by Xt.

A rating history Y = (X, {y1, · · · , yT }) is a combination
of a rater sequence and a realization of the raters’ signals.
The rating yt reveals the signal that rt received for item
it, and thus the component sit(yt) consisting of those item
types that are still possible given rt’s realized signal.

Each realized rating of item i provides information about
whether the target will like the item, by eliminating some of
the previously possible states of the item. Given the set of
ratings on item i in a rating history Y , by raters with known
types given by π, item i’s state must lie in a subset ŝ(i, Y, π)
that is the intersection of the components identified by each
of the ratings of i.

All the possible subsets that could arise through different
realized ratings for i in Xt form a partition of Ω, which we
denote by π̂i(Xt). Note that each component of π̂i(Xt) is
either a component of π̂i(Xt−1) (if the final rating reveals no
new information) or is a strict subset of of a component of
π̂i(Xt−1) (if the final rating eliminates some possible states).
Thus, we say that π̂i(Xt) is a refinement of π̂i(Xt−1).

We will refer to a hypothetical recommender that makes
the best predictions possible, given full information about
the rater types π(X) and the entire rating history Y , as
an ideal recommender. The best prediction of whether the
target will like item i is the probability of a HI label, con-
ditional on the rating history and the rater types: that is,
conditional on the state being in ŝ(i, Y, π). We denote this
optimal prediction by

q(i, Y, π) =

P

ω∈ŝ,l(ω)=HI
p(ω)

P

ω∈ŝ
p(ω)

The prior probability that the target will like an item i,
before receiving ratings, is q(i, Y0, π) =

P

ω∈Ω,l(ω)=HI
p(ω).

Any joint distribution of rater and target preferences can
be represented within this model. For example, suppose the
system has a single rater r1 in addition to the target. Fur-
ther, suppose that r1 can discern two kinds of items, which
we denote ′+′ and ′−′. Say the target likes 60% of items that
r1 labels ′+′, and 40% of items that r1 labels ′−′. We can
model this with a state space Ω = {+H,+L,−H,−L}, prior
probabilities p(+H) = p(−L) = 0.3, p(−H) = p(+L) = 0.2,
partition π1 = {{+H, +L}, {−H,−L}}, and state labels
l(+H) = l(−H) = HI , l(+L) = l(−L) = LO. The prior
probability of a HI label q(i, Y0, π) is .3 + .2 = .5. The prior
probability of a ′+′ rating is also .5. After a ′+′ rating,
q(i,′ +′, π) = .3/(.3 + .2) = .6.

We summarize our model of the underlying information
setting with the following definition:

Definition 1. A partial information structure P =
(Ω, p, I, J, π, X) consists of a state space Ω, a prior proba-
bility distribution p, a set of items I, a set of rater ids J,
a function π that maps rater ids to types, and a sequence
of (item id, rater id) pairs X specifying the ratings to be
acquired.

2.3 Random Noise Attacks
We now introduce attacks into our model of the recom-

mendation process. We model attackers as creating sybil
identities and injecting strategically chosen ratings into the
rating sequence. We will prove lower bounds on the infor-
mation loss suffered by any recommender algorithm that is
robust in the face of such attacks. That is, we will show that,
for any algorithm, there exists a partial information struc-
ture and an attack strategy such that either the expected
damage for the attacker is high or the expected information
loss absent an attacker is high. In fact, our results only
require robustness against a special class of attacks, ran-
dom guessing attacks, which are defined below. Naturally,
the lower bound applies a fortiori to recommenders that are
resistant to all possible attack types.

Definition 2. An n-sybil random noise attack strat-

egy A = (JA, π′, X ′) on an information structure P =
(Ω, p, I, J, π, X) is comprised of three elements.

• JA is a set of n sybil identities.

• A function π′ specifies for each sybil identity r′ ∈ JA

a type π′(r′) ∈ Π corresponding to some real type.

• X ′ is an expanded rater sequence that is constructed
by inserting pairs of the form (rt, it) at any number of
locations in X, where rt ∈ JA and it ∈ I.

For each time t such that rt ∈ JA, the attacker receives
no signal but generates a fake rating. It selects randomly
among the signals that the real type π′(rt) could have re-
ceived, if there were such a real type acting at this point in
the sequence. That is, the ratings from previous non-attacker
entities in the rating sequence determine the set of states that
are still possible. One of these states is selected at random,
according to the relative likelihood of those states given by
the original probability distribution p. The rating reported
is then the one that identifies the component of π′(rt) that
contains the selected state.

Expected Damage:
Next we quantify the damage caused by an attack A on
an information structure P . Intuitively, it is the expected
difference in the loss between the predictions that a recom-
mender would make with and without the addition of the
attacker’s ratings.

Up to this point, we have concentrated on the best pos-
sible prediction that an ideal recommender system could
make given a sequence of ratings and information provided
by knowledge of the raters’ types, ie., the structure of the
raters’ partitions. An actual recommender system sees the
ratings and target labels, but it does not know anything
about the underlying partition structure except information
that can be inferred from the rating history. Let ℓℓℓ denote
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a vector of the target’s ultimate labels, one for each item i.
We then model an actual recommender system R by a pre-
diction function qR(i, Y,ℓℓℓ), which processes a realized rating
history and target labels to predict, for each item i, a prob-
ability of the target labeling item i “HI”. We assume that
the target labels each item right after its last rating in the
sequence Y , and that the recommender R cannot access the
value of a label li until it is labeled. The quality of the
prediction for item i is assessed just before the target labels
item i; the recommender may condition its prediction on the
rating history and revealed labels up to that time.

Let ωωω = {ωi} be a vector of states for all items in I . Given
the states ωωω, the signals of all genuine raters are determined;
let Y (ωωω) be the realized history for the genuine raters. As
the states are independently drawn, p(ωωω) =

Q

p(ωi).
Let Z be any realization of the random ratings made by an

attacker in X ′. The attack ratings Z may depend on earlier
ratings by genuine raters. However, these raters’ ratings are
completely determined by ωωω, and so the conditional prob-
ability P (Z|ωωω) is determined by the type π′ the attacker
is posing as. We use pπ′,ωωω(Z) to denote this conditional
probability. Let Y ′(ωωω, Z) be the rating history obtained by
merging a genuine history Y (ωωω) with the attack ratings Z.

Definition 3. The expected damage ED(R,P , A) of
an attack strategy A on a recommender algorithm R for an
information structure P is defined as:

ED(R,P , A)
def
=

P

i∈I

P

ωi∈Ω p(ωωω)
P

Z
pπ′,ωωω(Z)

ˆ

L[l(ωi), q
R(i, Y ′(ωωω, Z), ℓℓℓ)] − L[l(ω), qR(i, Y (ωωω), ℓℓℓ)]

˜

Robustness:
We are now ready to state our definition of robustness.

Definition 4. A recommender system R is (n, c)-robust

against random noise attacks iff, for any partial information
structure P, and any n-sybil random noise attack strategy A
on that structure, ED(R,A,P) ≤ c.

Information Loss:
Finally, we define the expected information loss IL(R,P ,A)
that a given recommender R incurs for a rater sequence X ′

that may include some attacker sybils. Intuitively, it is the
expected difference between the loss on the predictions qR

made by the recommender and the loss on predictions q that
an ideal recommender would make, knowing the types of all
the honest raters and which raters were attacker sybils.

Definition 5. The information loss IL(R,P , A) of a
recommender algorithm R on an information structure P
together with attack A is defined as:

IL(R,P , A)
def
=

P

i∈I

P

ωi∈Ω p(ωωω)
P

Z pπ′,ωωω(Z)

ˆ

L[l(ωi), q
R(i, Y ′(ωωω, Z), ℓℓℓ)] − L[l(ω), q(i, Y (ωωω), π)]

˜

Information loss for a practical recommender may arise for
several reasons. In order to provide a simple user interface,
a recommender may not elicit ratings in a form that fully
reveals the rater’s partition. It may have an incorrect way
of interpreting a rater’s ratings, because it does not yet have
enough experience with that rater to infer its type. Or the
recommender may include features intended to resist ma-
nipulation that also cause it to inefficiently use information
from some raters.

3. LOWER BOUNDS ON INFORMATION
LOSS

The key intuition behind our lower bounds is the obser-
vation that no algorithm that has observed only a small
number of ratings can distinguish (with high probability) a
genuine rater from a random-noise sybil. Only after a suffi-
ciently long sequence of observations can we reliably detect
that the former moves the predictions in the right direction
more often. A manipulation-resistant algorithm must keep
the expected influence of a random-noise sybil very small to
prevent an attacker from using n of them to cause significant
damage. Thus, it must also limit the influence of a genuine
rater for a number of rounds.

We use a simple family of information structures to con-
struct our proofs. This family of instances is sufficient for the
worst-case information loss result. In section 4, we discuss
generalizations of this result to other information structures,
as well as other loss functions. We begin by proving a lower
bound in the context of 1-sybil attacks; in section 3.2, we
use this to prove our main result, on n-sybil attacks.

3.1 Lower bound on 1-sybil attacks
In this section, we prove a lower bound on information

loss in 1-sybil attacks. Throughout this section, suppose
that we have been given a damage bound d. We consider
a family of information structures P(b), where the param-
eter b denotes the magnitude of information the informed
raters have. We begin by defining the base structure P(b) =
(Ω, pb, I,X(b), πb), as follows. The state space is defined as
Ω = {+H,+L,−H,−L}; pb(+H) = pb(−L) = 0.25 + b/2,
pb(−H) = pb(+L) = 0.25 − b/2. The target assign labels
l(+H) = l(−H) = HI , l(+L) = l(−L) = LO. I is a set of
2mb items, where mb will be specified later. There is only
one rater r and thus each item gets only one rating. The
rater rates half the items: X = (r, i1), (r, i2), . . . , (r, imb

).
The rater’s partition π is such that she receives the signal
yi =′ +′ when the state is either +H or +L. Note that
pb(l(ω) = HI |yi =′ +′) = pb(+H)/(pb(+H) + pb(+L)) =
0.5 + b, and pb(l(ω) = HI |yi =′ −′) = 0.5 − b. The prior
probability that the target’s label is HI is 0.5, as is the
probability that yi =′ +′.

We next introduce a corresponding family of attacks A(b)=
(JA, π′

b, X
′(b)). The set JA consists of only one sybil identity

r′. The partition π′
b(r

′) = πb(r) is as described above. In
other words, every time r′ rates an item i′, she will randomly
report yi′ ∈ {+,−}, each with probability 0.5.

The sybil rates the other mb items not rated by the gen-
uine rater. The rater sequence X ′(b) is constructed ran-
domly, as follows: The attacker flips a fair coin, and if it is
heads, she inserts all her mb ratings before r’s first rating.
If the coin comes up tails, she instead inserts all her ratings
after r’s last rating.

We will now prove that, for any recommender R, we can
set a value mb such that either ED(R,P(b),A(b)) ≥ d, or
IL(R,P(b), A(b)) is Ω(log 1

d
).

Consider two extreme options for the recommender in
making predictions for an item, given the single rating avail-
able, which might be from a genuine rater or from an at-
tacker. One extreme option is to ignore the rating and pre-
dict 0.5. This avoids any expected damage, since the rating
has no effect. When the rater is a sybil, ignoring the rating
also adds nothing to the expected information loss. When
the rater is genuine, however, there is an expected informa-
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tion loss from not moving to the correct prediction of either
0.5 + b or 0.5 − b.

The other extreme option is for the recommender to treat
the rater as genuine, predicting 0.5+b or 0.5−b depending on
the rating. Here, if the rater is honest, there is no damage or
information loss, since the prediction matches both the ideal
prediction and the prediction that would have been made in
a scenario where all the raters were genuine. If, however,
the rater is a sybil, and the rating is just noise, there will be
expected information loss and expected damage.

Of course, the recommender need not make only these ex-
treme choices. It can partially incorporate a rating, moving
the prediction only partway from 0.5 to 0.5 + b or 0.5 − b.
This will increase the information loss when the rater is gen-
uine, and increase both damage and loss when it is not.

A key ingredient of our lower bound is that we bound the
influence a rater can have after a sequence of ratings. The
following definition is specialized to our setting, in which
each item is rated by a single rater:

Definition 6. Consider any realized sequences Y ′ and ℓℓℓ
of ratings and labels in the structure P(b) with attack A(b),
and suppose that (rt, it) is the rating at time t. Let Y ′

t−1

denote the realized ratings upto time t − 1, and ℓℓℓt−1 denote
the subset of labels that have been revealed before the tth

rating. Then, we define the influence of rater rt on item it
as the value β given by:

β = max



γ

˛

˛

˛

˛

qR(it, Y
′

t−1, ℓℓℓt−1|yt =′ +′) ≥ 0.5 + γ,
qR(it, Y

′
t−1, ℓℓℓt−1|yt =′ −′) ≤ 0.5 − γ

ff

Hereafter, we assume that each rater can effect the same
change to the predicted probability in either direction, i.e.,
upward or downward. This allows for a simpler statement
of the lower bound. Dropping this assumption would not
alter our result in any significant way.

We first show that the influence affects both the damage
(for the attacker r′) and the loss (for the genuine rater r).

Lemma 1. Suppose (r′, i) is a rating by the attacker, and
suppose the influence of r′ on item i is β (for given R and
Y ′). Then, the expected damage on this item is β2.

Proof. As this rating is entered by the random-guessing
attacker, if the rating is ′+′,the item will be labeled HI with
probability 0.5, and LO with probability 0.5. By definition
of the influence β, the recommender predicted a value 0.5+β
on item i. Thus, the expected loss is

0.5(0.5 − β)2 + 0.5(0.5 + β)2 = 0.25 + β2

On the other hand, without the attacker’s rating, there
would have been no ratings on i, and so the recommender
would have predicted 0.5, for an expected loss of 0.25. Thus,
the expected damage of this rating is 0.25 +β2 − 0.25 = β2.
The case when the rating is ′−′ is symmetric.

Lemma 2. Suppose (r, i) is a rating by the genuine rater,
and suppose the influence of r on item i is β < b (for given R
and Y ′). Then, the information loss on this item is (b−β)2.

Proof. The additional damage caused due to the re-
stricted influence can be calculated as the difference between
the expected score of the restricted predictions and the ex-
pected score of the optimal predictions. Observe that when
rater r reports signal ′+′, the probability that the label is
HI is 0.5 + b (as is the optimal prediction q(i, Y ′, π)), but

the prediction qR(i, Y ′, ℓℓℓ) = 0.5+β. Thus, the expected loss
on this item is:

(0.5 + b)[(0.5 − β)2 − (0.5 − b)2]

+(0.5 − b)[(0.5 + β)2 − (0.5 + b)2]

= (b − β)2

The case in which r reports ′−′ is symmetric.

Now, because of the randomized sequence X ′, the recom-
mender algorithm R cannot tell beforehand if the first rater
r1 is the sybil r′ or the genuine rater r. Moreover, for the
first mb items, the recommender has no useful information
about the second rater (because all its ratings come after
the first rater’s ratings.)

Now, consider the time step just after m < mb items have
been rated. At any point of time, the only information about
the first rater r1 that is available to the recommender algo-
rithm is the past record of its ratings, and the corresponding
target labels on the items. The information ui available to
the algorithm about each item i ≤ m can thus be represented
by one of the four symbols {+H,+L,−H,−L}, where +H
denotes that r1 rated + and the target ultimately labeled
the item HI , etc. Note that when the rater is honest, the
information ui is exactly the state ω, but when the rating
is from a sybil, the information ui = +H could occur either
in state +H or −H .

For any item i, the probability of each outcome will be
different depending on whether r1 was the informative rater
r, or the uninformative rater r′. We use Pb() to denote
the probability mass function for rater r, and P0() to de-
note the probability mass function for the random-guesser
r′. Likewise, we use E0() and Eb() to denote expectations
with respect to probabilities P0 and Pb respectively, and
Var0 and Cov0 to denote variance and covariance with re-
spect to probabilities P0. We note that

Pb(ui = +H) = Pb(ui = −L) = 0.5(0.5 + b)

Pb(ui = −H) = Pb(ui = +L) = 0.5(0.5 − b)

P0(ui = +H) = P0(ui = −L) = 0.25

P0(ui = −H) = P0(ui = +L) = 0.25

We allow for the recommender algorithms to operate in a
path-dependent way. That is, a rater whose first rating is
in the correct direction and second in the wrong direction
may be assigned a different influence than one whose first
rating is in the wrong direction and second in the right di-
rection. Thus, we cannot work with the expected number of
guesses in the right or wrong direction; instead, we analyze
the probabilities of individual paths of observations.

Fix a recommender algorithm. Suppose rater r1 has a
prediction-outcome history u = (u1, u2, . . . , um). Just be-
fore item (m + 1) is labeled, the recommender algorithm
determines what to predict on that item, depending on r1’s
rating. Thus, the recommender implicitly prescribes the in-
fluence of r1 on item (m + 1). This can depend on the
entire path u, but nothing else, and hence we use the no-
tation Inf(u) to denote this quantity. If the recommender
algorithm is itself randomized, we can let Inf(u) denote the
expected value (over the recommender’s randomization) of
r1’s influence on item (m + 1), given history u.

We prove a lower bound on the number of ratings needed
for a rater to build her expected influence to a given level
β, for any (1, d)-robust algorithm. To do this, we first fix
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a number m of items rated, and bound the expected influ-
ence of the honest rater after m rounds. The robustness
property gives us an upper bound on E0(Inf(u)), the ex-
pected influence of the impersonator. We need to extend
this to a bound on Eb(Inf(u)), the expected influence of an
honest rater. The two expectations can be quite different
because certain sequences u are much more likely to have
come from an informed rater than an impersonator, i.e.,
Pb(u) ≫ P0(u). To link them, we use the likelihood ratio
function g(u) defined as follows:

gi(u)
def
=

Pb(ui)

P0(ui)
= (1 + 2b) if ui = +H or − L

= (1 − 2b) if ui = −H or + L

g(u)
def
=

Pb(u)

P0(u)
=

Y

i

gi(u)

The following relation is immediate:

Lemma 3.

E0(g(u)Inf(u)) = Eb(Inf(u))

Proof. This follows from the definition of g(u).

We now seek to prove an upper bound on E0(g(u)Inf(u)).
To do this, we bound E0(g(u)) and E0(Inf(u)) separately,
and then bound the covariance Cov0(g(u), Inf(u)).

Lemma 4. E0(g(u)) = 1.

Proof. First, note that E0(gi(u)) = 0.5(1+2b)+0.5(1−
2b) = 1. Using the independence of different items i, we
have E0(g(u)) =

Q

i
(E0(gi(u))) = 1

Lemma 5. For any (1, d)-robust recommender algorithm,

E0(Inf(u)) ≤
√

2d.

Proof. By Lemma 1, if Inf(u) = β, and r1 = r′, the
expected damage on item i is β2. Thus, conditional on r1 =
r′, the expected damage on the mth item is E0([Inf(u)]2).
Taking into account the probability that r1 = r′ is 0.5, the
expected damage on the ith item is 0.5E0([Inf(u)]2). Noting
the standard inequality [E(x)]2 ≤ E(x2), and the fact that
the expected damage is no more than d, gives the result.

Lemma 6. The covariance of g(u) and Inf(u) is bounded
by:

Cov0(g(u), Inf(u)) <
p

E0(Inf(u))e2mb2

Proof. We use the standard relationship Cov(X, Y ) ≤
p

Var(X)Var(Y ). As Inf(u) ∈ [0, 1], we have

Var0(Inf(u)) ≤ E0([Inf(u)]2) ≤ E0(Inf(u))

We now bound Var0(g(u)). First, note that E0([gi(u)]2) =
0.5(1 + 2b)2 + 0.5(1− 2b)2 = 1+ 4b2. Taking logarithms, we
have

log E0([gi(u)]2) = log(1 + 4b2) ≤ 4b2 (1)

Thus, we have:

E0([g(u)]2) =
Y

i

E0([gi(u)2]) ≤ e4mb2

This leads to the required bound on the variance:

Var0(g(u)) = E0([g(u)]2) − E0(g(u)) < e4mb2

This leads to our main result on the influence growth rate:

Theorem 7. In information structure P(b), with attack
A(b), and any (1, d)-robust recommender algorithm R, for

any m ≤
log( β√

2d
−1)

2b2
, the first rater r1 has expected influence

less than β.

Proof. We seek to bound Eb(Inf(u)) after m items have
been rated. From Lemma 3, this is equivalent to bounding
E0(g(u)Inf(u)).

From Lemma 5, we know that E0(Inf(u)) ≤
√

2d, and
from Lemma 4 we know that E0(g(u)) = 1.

Now, consider any m ≤
log( β√

2d
−1)

2b2
. We must have 2mb2 ≤

log( β√
2d

− 1), and thus, e2mb2 ≤ β√
2d

− 1.

From Lemma 6, we have:

Cov0(g(u), Inf(u)) <
√

2de2mb2

Now, we are finally ready to bound the expected influence:

E0(g(u)Inf(u)) = E0(g(u))E0(Inf(u)) + Cov0(g(u), Inf(u))

<
√

2d +
√

2de2mb2

E0(g(u)Inf(u)) <
√

2d
β√
2d

= β

This completes the proof.

Remark: An alternative way to derive the asymptotic form
of this lower bound is by reduction to a widely studied prob-
lem in statistics: bounding the number of samples (items)
required to test a hypothesis (the rater is informative) against
an alternative (the rater is a random guesser) while achiev-
ing the desired limits on false positive (d) and false negative
(1/2) rates. We accept the hypothesis whenever the ac-
tual influence is more than half the expected influence of an
informative rater. The (1, d)-robustness condition implies
a bound on the expected influence of the random guesser
(Lemma 5), which limits the false positive rate (the frac-
tion of random guessers who would have influence above the
threshold). Likewise, honest raters must pass the test at
least half the time. Results on hypothesis testing (see [4,
Sec. 11.8]) lead to a lower bound on the number of samples.

Total information loss:
Theorem 7 bounds the number of rounds required for the
rater r1 to gain influence β in any (1, d)-robust algorithm.
In order to get an information loss bound, we set β to b/2 in
the statement of Theorem 7. Until this influence has been
reached, we know that the rater will be effectively restricted.
This leads to a lower bound on the total information loss due
to limiting the influence of a rater:

Theorem 8. Any (1, d)-robust recommender algorithm R

must have IL(R,P(b), A(b)) ≥ log 1

d
+log( b2

32
)

32
.

Proof. With probability 0.5, the first rater is the in-
formed rater r. We seek to prove a lower bound on the total
additional information loss due to the restricted influence of
rater r. Using the linearity of expectation, we have

E( total additional loss) =
X

i

E(additional loss on i)

First, we observe that for b2 < 32d, the stated bound is
negative and hence trivially true. Thus, it is sufficient to
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consider the case in which b2 ≥ 32d ⇒ b ≥ 4
√

2d. Setting
β = b/2, we know from theorem 7 that the honest rater must
have influence less than β for the first m = log( β√

2d
−1)/2b2

rounds. For any i ≤ m, by Lemma 2, the expected ad-
ditional loss the target incurs on item i due to the rater’s
restricted influence is at least b2/4. Thus, the total addi-
tional loss, conditioned on rater r rating first, is at least
mb2

4
. Taking into account the 0.5 probability that rater r is

indeed first, we have an expected loss of mb2

8
. Noting that

β = b
2

and
√

d ≤ b

4
√

2
, we have:

mb2

8
=

log( β√
2d

− 1)

16
=

log( 1√
d
) + log( b

2
√

2
−

√
d)

16

≥
log( 1√

d
) + log b

4
√

2

16
=

log 1
d

+ log( b2

32
)

32

Remark: The value of m in this bound gives us the required
setting for the number of items mb in P(b), in terms of the
parameter d.

3.2 Loss bound for n-sybil attacks
We can extend P(b) and A(b) to prove a lower bound for

n-sybil attacks; this extension is outlined in this section.
The structure has n genuine raters J = {r1, . . . , rn}, each
with an identical partition; each rates a disjoint set of items.
The attacker also creates n sybils JA = {r′1, r′2, . . . , r′

n}. The
key is that the rating sequence X ′ is now constructed by an
iterative random process: In each iteration, the attacker flips
a coin, and if it is heads, he adds the next rater from r onto
the list (as long as there are some remaining); otherwise, he
adds the next rater from JA. This construction ensures that,
at least until the first n raters’ ratings have been labeled,
the probability that the next rater is an attacker is exactly
0.5, even conditioned on knowing the types of the raters up
to that point. Thus, when deciding how much influence to
give a rater, the sequence of ratings up to his first rating
is irrelevant, and we can apply theorem 8 with our chosen
value of d.

In principle, R could allow a different amount of expected
damage on each rater, as long as the sum was no more than c.
Given the Ω(log(1/d)) form of the bound, which is convex
in d, dividing the expected damage equally minimizes the
overall bound, and hence we assume without loss of general-
ity that the expected damage on each of these first n items
is be limited to d = c

n
.Putting this value into the statement

of theorem 8 gives us:

Theorem 9. For each b ∈ (0, 0.5), there is an infor-
mation structure P(b, n) with n informed raters and attack
A(b, n) such that any (n, c)-robust recommender algorithm

R incurs an information loss of at least n
log n

c
+log( b2

32
)

32
.

Proof. Follows by substituting d = c
n

in theorem 8

4. DISCUSSION AND FUTURE WORK
In our lower bound, we constructed a simple family of

instances P(b), and showed that any recommender system
must incur an information loss (expected increase in predic-
tion error) on these instances. We thus proved that there
must be information loss in the worst case instances, where
an instance denotes a particular distribution of tastes, spe-
cific correlations with the target, and a specific rating order.

It is natural to ask if this information loss is a rare problem
that occurs only in pathological instances, or if it is likely to
occur in common situations as well. In this section, we out-
line several reasons to believe that, for any reasonable set of
instances, the average-case loss is not likely to be much bet-
ter than the worst-case lower bound: The bound is robust
to more complex instances and different scoring rules; the
attack model is fairly simple; and, the bounds would hold
under alternative definitions of robustness. We also identify
promising directions for future work in light of these results.

In our family of instances, the recommender prediction is
always 0.5 before the rater arrives, and 0.5± b after optimal
use of the rater’s information. However, the same form of
bound can be derived for other settings. The key step in the
lower bound proof is equation 1, through which the variance
of the likelihood ratio g(u) is bounded in terms of b2. We
can consider different instances in which the starting point
is v 6= 0.5; equation 1 can be shown to hold, with a different
constant 1

v(1−v)
in place of 4. As long as v is bounded away

from 0 and 1, this will yield a similar lower bound on infor-
mation loss. We can also consider information structures in
which the base prediction r is not the same for all items, but
follows some distribution; or, in which the change magnitude
b is not the same for all items, but follows some distribution.
Provided the distributions have suitably bounded support,
a similar Ω(log(n/c)) loss bound will follow.

Another generalization is to look at alternative loss func-
tions. In particular, the log-loss function is attractive be-
cause the informativeness would be quantified in terms of
the standard information-theoretic entropy. In this model,
too, the lower bound holds; indeed, it holds even more gen-
erally, without the restriction mentioned above that v be
bounded away from 0 and 1.

Our attacks consist of simple random-guessing strategies,
and our bounds thus hold for algorithms robust against any
class of attacks that include these attacks. However, one
critical feature of the attacks is that they mimic the rat-
ing distributions of a plausible genuine rater. One class of
manipulation-resistance algorithms identify suspicious raters
by matching their rating histories to a set of attack pro-
files [3, 12, 9, 7, 8]. Some empirical studies have examined
the impact on predictions of removing suspicious raters. If
there is no noticeable loss in prediction accuracy, our results
implies that either the attack profiles are simplistic (i.e.,
easy to distinguish from genuine raters) or there is signif-
icant information redundancy among the genuine raters so
that information discarded from some genuine raters can be
compensated by information from others. A fruitful direc-
tion for future research is to incorporate such redundancy
into our formal model.

Our definition of manipulation-resistance states that the
expected net damage inflicted by the attacker on the target
should not be too large. Other notions of robustness are
also reasonable. One possibility would be to require that
an informationless attacker cannot cause a large movement
on any one item. Our lower bound extends to this model
as well, because the y-guessing attacks we study are infor-
mationless, and we only account for the damage caused on
a single item rated. Another alternative is to require that
the net damage is never too large (not just in expectation);
this is the notion of manipulation-resistance that the Influ-
ence Limiter satisfies. Our lower bound applies a fortiori
to this definition as well. Another reasonable definition is
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to require that the aggregate damage across all legitimate
targets be limited in some way. O’Donovan and Smyth [10]
suggest using accuracy information from multiple targets to
judge credibility. Our bound of Ω(log(n/c)) loss applies to
this model, but is very weak as an aggregate bound. This is
an interesting direction for future research.

In [14], it is shown that the Influence Limiter is (n, c)-
robust against a very broad class of strategies, and that
the worst-case information loss it induces is O(log n

c
). Con-

sidered as a function of n alone, the Ω(log n) lower bound
matches the O(log n) upper bound. However, the constants
in the two bounds differ significantly. The constants in
the lower bound proof are probably not optimal, as our
bounding technique required approximations that may not
be tight. Nevertheless, it is an important challenge for fu-
ture work to devise manipulation-resistant algorithms that
move closer to the lower bound.

5. OTHER RELATED WORK
As mentioned, there are a number of papers on the topic

of shilling attacks in recommender systems [11, 6, 3, 12, 7,
15, 8, 9, 14]. In this section, we discuss other literatures
that are related to our approach.

We defined and analyzed an influence metric that mea-
sures the change that a rater can cause to the predicted
probability of an item. Rashid et al. [13] propose other
algorithm-independent measures of rater influence.

The literature on bounded-regret online learning deals
with combining predictions from multiple forecasters and
proving worst-case bounds on the error relative to the best
predictor that could be chosen in hindsight (see Cesa-Bianchi
and Lugosi [2] and references therein). Awerbuch and Klein-
berg [1] study manipulation in a different model of the rec-
ommendation process: a user samples items and recommen-
dations until he likes an item, at which point he recommends
that item to others. They describe an online learning scheme
and prove bounds on the number of samples required, even
in the presence of adversaries.

There are parallels between our lower bound and the re-
sults of Friedman and Resnick [5] on the social costs of cheap
pseudonyms. At a high level, both results demonstrate that
the possibility of creating false identities forces newcomers to
be trusted less, thus leading to a loss of system performance
or efficiency. However, the result of Friedman and Resnick
relies on a characterization of equilibria in an economic gain
model, whereas our model is information-theoretic rather
than economic, and does not use equilibrium arguments.

6. CONCLUSION
In this paper, we have presented an information-theoretic

model of informativeness and manipulation in recommender
systems, and used it to shed light on the tradeoff between
using all available information and resisting manipulation.
The first insight, based on our lower bound, is that some
amount of information loss is unavoidable in a recommender
system that resists manipulation. Further, we note that,
keeping other parameters fixed, the lower bound on required
information loss is unbounded as the number of sybils n is
increased towards ∞. This shows that no useful recom-
mender system can be resistant to manipulation by an at-
tacker with an unbounded number of sybils: to achieve this,
the recommender would need to essentially throw away all

rating information from genuine raters for indefinitely long,
thus rendering it useless.
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