SI540

Notes on Representation

Paul Resnick

September 24, 1999

The textbook says that “any information can be represented as bits.” This writeup is intended to provide a little more detail to back up that claim.

Later in the course, we’ll develop a layered, relativistic notion of the distinction between information and data. For now, let’s think about “information” as something that people work with, something that can change a person’s mind. “Data” is something that computers can manipulate. Beware that the terms data and information will not always be used consistently by other people, but we’ll try to be consistent in this class.

Computers store, transmit, and manipulate bits. A bit, or binary digit, has one of two possible values or states, which you can think of as on/off, true/false, or, most conveniently, either 1 or 0. The idea that computers deal with 1s and 0s is actually an abstraction. In reality, computers deal with electrical signals, which have a variable voltage. By convention, a high voltage state is treated as a 1, and a low voltage state as a 0. Computers are designed to operate in a way so that they don’t have “medium” voltage: they quickly move from low to high or vice versa, so that there isn’t any ambiguity about whether they’re in state 1 or state 0. Computers are called binary because they operate with just two states (“bi”). In the early days of computing, there were some designs for “trinary” computers that distinguished among three states (“tri”: high, medium, and low), but it turned out to be much easier to engineer computers to distinguish between only two states, and all modern computers are based on a binary system.

The bit is the basic building block. Bits are combined into bit strings, ordered sequences of bits. For example, 0111000011010 is a bit string.

A representation is something that takes the place of an original item, in such a way that the original can be reconstructed from the representation. Sometimes the original can be perfectly reconstructed, sometimes only approximately. We’ll be concerned with binary representations, bit strings that substitute for pieces of information that are potentially meaningful to people.

We’ll sometimes use “represent” as a verb, to indicate the process of substituting a bit string for a piece of information. We’ll sometimes use the noun form, “representation” to refer generically to the process of representing information as bit strings, or specifically to a particular bit string. We’ll often use the term “interpretation” for the reverse process of reconstructing some information from a representation. Think of a person interpreting a string of bits to figure out exactly what it means. Figure 1 gives a visual summary of all these terms and processes.

Representing Numbers as bit-strings

We tend to think about numbers in decimal notation. For example 37 is 3 tens and 7 ones. The decimal notation system is actually itself a representation scheme for numbers, but we’re interested here in binary representations of numbers. The easiest way to understand this is to think about how to interpret bit strings as numbers; the representation process will be easier to understand after that.

[image: image1.wmf]Information

Data

:bit strings

Information

Data

:bit strings

Store, manipulate,

transmit

represent

interpret

Let’s start with an example: 01000011. This is a representation of the number 67. Think of the right-most bit as the 1s column, the next right-most bit as the 2s column, the next as 4s, 8s, 16s, 32s, 64s, and 128s. Thus, 01000011 = 0*128 + 1*64 + 0*32 +016+0*8+0*4 + 1*2 + 1*1 = 64 + 2 + 1 = 67.

The right-most bit is sometimes called the 0th bit, the next right-most the 1st bit, the next the 2nd bit and so on. Why this numbering scheme? Well, the 0th bit tells you how many 1s there are, and 1 = 20. The 1st bit tells you many 2s there are, and 2 = 21. The 2nd bit tells you how many 4s there are, and 4=22. The 3rd bit indicates how many 8s there are, and 8=23. In general, the nth bit indicates how many 2ns there are.

Now let’s try an example in the other direction. How would you represent the number 68? Well, 68 = 64 + 4, so we get the bit string 01000100. Of course, it’s a little tricky to do this in general. I magically divided 68 up as 64+4, which maps onto the meanings of the 64s place and the 4s place. If I had said 68=63+5, it would not have been helpful in trying to figure out the mapping to bits. But if you use trial and error you’ll do OK at this.

Notice that we could have omitted the left-most bit and still had a string representing the number 68, 1000100. Usually, there will be a convention about how long the bit strings should be (typically 8, 16, or some other multiple of 8), so that we include extra 0s on the left to “pad” the string. Question: why don’t we put the extra 0’s on right end rather than the left end of the bit string?

If this hasn’t all been review, then you should do a few exercises on your own. Fill in the missing cells in this table:

Decimal notation
Binary notation

63
01000011

64
01000100

00001010

01000000

7

1

On Bit-string Lengths

Each bit can distinguish between two states, 0 or 1. If there are more than two possible states, then more than one bit will be needed. For example, suppose you want to find bit strings to represent all seven days of the week. You’ll want a different bit string for each day of the week: if one bit string is used for more than one day, you won’t be able to recover a unique day of the week from looking at a bit string. Hence, you’ll need more than one bit in each string.

Will 2-bit strings be long enough? The possible strings are 00, 01, 10, and 11. There are four of them, not enough to distinguish among 7 different days of the week. By the way, we could have figured out there are four 2-bit strings without listing them all. There are two possible values for the first bit, and each value can be combined with possible values for the other bit. So, there are 2x2=4 possible two-bit strings.

Will 3-bit strings be long enough? There are two possible values for the third bit, and each can be combined with any of the four 2-bit strings, so there are 2x2x2=8 possible three-bit strings. Just to be sure, let’s enumerate them: 000, 001, 010, 011, 100, 101, 110, 111. You may notice that I enumerated these strings in a particular order: if you interpret the bit strings as numbers, following the interpretation rule from the previous section, the strings represent the numbers 0-7, in order.

To test your understanding so far, how many different 4-bit strings do you think there are? How many 5-bit strings? Can you give a formula for how many different n-bit strings there are, as a function of n? (Hint: you need to use an exponent).

Representation, Interpretation, and Integrity

It’s probably clear by now that representation is just a matter of convention, but it’s worth being explicit about it. We can choose any mapping we want from things to bit-strings. For example, we could say that Monday is 000 or that Monday is 110. In representing numbers, we could have made the left-most digit be the 1s place rather than making the right-most digit be the 1s place.

The first requirement for a good representation scheme is that representation followed by interpretation should regenerate the original information (or a good approximation). What do we need in order to maintain meaning of information in this way? First, the representation and interpretation processes need to be coordinated. If you represent Monday as a bit-string 110 and then you or someone else interprets the bit-string, you’d like it to be interpreted as Monday rather Tuesday. Second, if the bit string is stored or transmitted, it must not be changed (this is sometimes called data integrity).

Third, any manipulations of bit strings that a computer does need to correspond to meaningful manipulations of the original information. For example, binary computers can execute mechanical operations that combine pairs of bit strings in a way that corresponds to addition of the numbers. In fact, the operation is quite simple to understand: just line the two numbers up in columns and use the addition-with-carrying operation that you learned in school, but do it all in base 2. For example:

 01000011 (67)

+01000100 (68)

=10000111 (135)

It turns out that this addition-with-carrying operation is fairly easy to implement mechanically inside a computer chip. The art of choosing a good representation is to make mechanical manipulations easy in this way.

Representing Text as bit-strings

 Representing letters in binary is just a matter of defining a conventional mapping between letters and bit-strings. Even if we count capital letters separate from small letters and count punctuation marks and some “invisible” characters, there are many fewer than 256 characters in the English language. 28 = 256, so 8-bit strings are sufficient for representing English characters. 8-bit strings are sometimes called bytes. Below is a table showing some mappings from characters to 8-bit strings.

Symbol
Number
Hex
Binary

7
55
/x37
00110111

8
56
/x38
00111000

9
57
/x39
00111001

:
58
/x3A
00111010

;
59
/x3B
00111011

<
60
/x3C
00111100

=
61
/x3D
00111101

>
62
/x3E
00111110

?
63
/x3F
00111111

@
64
/x40
01000000

A
65
/x41
01000001

B
66
/x42
01000010

C
67
/x43
01000011

[image: image2.wmf]These mappings happen to come from a conventional mapping that is widely used, called ASCII. One interesting thing to notice is that the symbol ‘7’ is represented by a bit-string that is not the same as the bit string for the number 7 that you figured out above. Sometimes you’ll see ASCII tables that, instead of showing the bit string for each symbol, will show a number, in decimal or hexadecimal (a representation scheme we won’t be learning in this class). This is just a more convenient representation for people to read than a long string of bits. In a computer, the symbol would be represented in binary.

Originally, there was a 7-bit version of ASCII, meaning that every character was represented by just 7 bits. There are still some email gateways that garble email messages that use 8-bit ASCII codes, but this is rare now.

The ASCII representation scheme does not define a mapping for certain symbols used in other languages. Recently, agreements have been reached for conventional mappings called “Unicode” that include symbols used in many other languages besides English. Since there are more than 256 possible characters, 8 bits is not sufficient to represent all of them. Unicode uses 16 bits for each character. Unicode is backward-compatible with ASCII, however. Every symbol that has a defined mapping in ASCII has the same mapping in Unicode, but with 8 extra 0 bits padded on the left side.

That’s good enough for representing single letters. What about representing words and sentences in binary? Just as we define a convention for writing words down as sequences of letters (left to right is the convention in English), we define a convention for putting together several bit-strings, each representing a single character, to make a representation of a character string.

As a matter of notation, we’ll enclose character strings in double quotes, and single characters in single quotes. Think of a computer’s memory as one very long string of bits. Part of it, beginning at some bit, and ending with a special null character, is used to represent a particular string. Thus, the string “Hello world” would be represented by a sequence of bit-strings representing the characters 'H' 'e' 'l' 'l' o' ' ' 'W' 'o' 'r' 'l' 'd' '\0'. The last character, ‘\0’, the null character, represented in ASCII by 00000000, is by convention the marker for the end of a string.

Some operations are very easy to implement on character strings using this representation scheme. For example, to calculate the length of the string, a computer program can just start at the left and count bytes (8-bits = 1 byte) until it finds the null character, ‘\0’.

Other operations are harder to implement with this representation. For example, to insert a character in the middle of a string requires moving all of the following characters over by one byte in the memory. Similarly, to split a string into two strings requires insertion of a new null character, again requiring a copy of the rest of the original string one byte to the right in the memory.

Changing Representations

Consider the following transformation on characters (and hence on character strings), called ROT13. Each letter is mapped to the letter 13 later in the alphabet (after z, think of a as the next letter), maintaining capitalization.

Consider the character string “Rapelcgvba”. Counting forward 13 from ‘R’ yields ‘E’, from ‘a’ yields ‘n’, and so on. The ROT13 transformation of “Rapelcgvba” is “Encryption.” Encryption is, in fact, just a change of representational schemes for which it is hard to do the reverse operation of interpretation unless one knows some secret that one hopes is not known to one’s adversaries. It turns out, however, that ROT13 is not very useful for encryption. Think about why not: we’ll discuss it in class. ROT13 is, however, fairly widely used for something else on the Internet. Can you guess what?

Representing Pictures

How can we represent images or pictures as sequences of bits in such a way that the original image can be reconstructed? Anyone who has ever used a fax machine knows that this is possible. When you send a fax, the image is scanned to convert it into a sequence of bits, which is sent over phone wires and used to regenerate an image that is approximately what was on the original piece of paper.

The basic idea is to draw a grid of very small rectangles on top of an image. Depending on the color in each cell of the grid (sometimes called a pixel), a different bit or bit string is used to represent that cell’s contents.

[image: image3.wmf]01001111101001010010111100000

01001111101001010010111100000

Let’s try working with a very small grid, 5 pixels wide by 6 pixels high. Suppose we represent each cell with a single bit, 1 for black and 0 for white. Furthermore, suppose we order the cells from left to right on the top row, then left to right on the next row, and so on through the entire grid. We can represent the entire grid as the bit string 01001111101001010010111100000.

This image can be regenerated from the bit string. First, draw a 5x6 grid, then write the numbers 0 or 1 in the appropriate cells, then paint the 0 cells white and the 1 cells black, like coloring-by-numbers that you might have done as a child.

It’s worth thinking about the ways that this process can go wrong. If some bits are lost or changed from the bit string, a different image will be regenerated. If the interpretation process is not coordinated with the representation process, again an incorrect image will be regenerated. For example, suppose that the recipient thinks the image is 10x3 instead of 5x6. The resulting image will look like this:

[image: image4.wmf]
Similarly, if the recipient thinks the image is 5x6, but thinks that the cells were scanned right to left, or if the recipient thinks that 1 is white and 0 is black, the resultant image will not be a reconstruction of the original.

Better quality image scanning can be achieved in two ways. First, there can be a finer grid, with more pixels per inch. Second, for each pixel, there can be more than one bit used to represent the color displayed. Professor Karen Drabenstott has some nice slides that illustrate this (click here to open them). Take her class on Integrated Media Production to get more details.

By the way, if you scan a 300x200 pixel image, using 8 bits to represent each pixel, it would take 300x200x8 = 480,000 bits. But there are compression techniques that allow fewer pixels to be used.

Some of the common formats for representing images including GIF and JPEG.

Some useful formulas, approximations, and nomenclature

This is as goo a place as any to mention that:

· 8 bits = 1 byte;

· b is the abbreviation for bits, B for bytes.

· 1000 is usually abbreviated K

· 1 million is usually abbreviated M

· 1 billion is usually abbreviated B

· data transmission is usually measured in bits, so the hypothetical image above would 480Kb.

· data storage is usually measured in bytes, so the hypothetical image above would be 60KB.

· 210 is approximately 103 = 1000

· 220 is approximately 106 = a million

· 230 is approximately 109 = a billion

· Thus, there are about 4 billion different 32-bit strings.

Representing Video (motion picture)

A motion picture can be represented by a sequence of images. The more images per second, the better the quality. There are compression techniques that do not store a complete representation of each image, instead representing only those things that have changed from the previous image. MPEG is a common format for representing video.

Representing Audio (Sounds)

Sound is a pressure wave in the air. For example, the “concert A” that orchestras tune to is a pressure pattern that repeats 440 times per second. When that pressure patterns reaches your ear, it sounds like an A note. Similar to the idea of imposing a grid over the space a picture occupies, to represent sounds we impose a grid over time that a pressure pattern presents. At each point in time, the pressure is measured and converted into a string of bits. To regenerate a sound from a string of bits, the bit strings are read and used to generate appropriate pressure levels, thus replicating (or coming close to replicating) the original pattern.

The quality of a digital sound recording can be improved in two ways:

· by taking samples more frequently, in order to detect more changes in pressure

· by using more bits to represent each sample, thus making more subtle distinctions between the possible pressure levels. Long-distance telephone systems use 8-bits to represent each sample. CDs use 16-bits for each sample.

Either of these methods of improving the quality of digital sound recordings results in the use of more bits to represent the same sound.

Some of the common formats used for representing audio include .wav files and MP3.

� EMBED Word.Picture.8 ���

Figure 1: representation and interpretation

� EMBED Excel.Sheet.8 ����

� EMBED Excel.Sheet.8 ���

�� EMBED Word.Picture.8 ���

[image: image5.wmf]Information

Data

:bit strings

Information

Data

:bit strings

Store, manipulate,

transmit

represent

interpret

If the representation

and interpretation are not

coordinated, the

information is garbled!

If the integrity of the data

is not maintained, the information

is also garbled!

[image: image6.wmf]Information

Data

:bit strings

Information

Data

:bit strings

Store, manipulate,

transmit

represent

interpret

If the representation

and interpretation are not

coordinated, the

information is garbled!

If the integrity of the data

is not maintained, the information

is also garbled!

_997956126.xls
Sheet1

		

_999675309.doc

Information

Data:bit strings

Information

Data:bit strings

Store, manipulate, transmit

represent

interpret

_999675717.doc

Information

Data:bit strings

Information

Data:bit strings

Store, manipulate, transmit

represent

interpret

If the representation

and interpretation are not

coordinated, the

information is garbled!

If the integrity of the data

is not maintained, the information

is also garbled!

_997955059.xls
Sheet1

		

