SI540

Notes on Programming Languages

Paul Resnick

September 24, 1999

Since the 1950s, the art of computer programming has evolved considerably. In general, the trend has been towards specifying instructions in more abstract terms, closer to how people think, with automatic translation of these “high-level” instructions into more basic instructions that computers can directly execute.

First-generation: machine language(s)

Every central processing unit (CPU) has a few built-in instructions (the instruction set) that it can execute directly. Each of these instructions is assigned a unique binary code. This is analogous to the decimal numbers used to represent instructions with the Little Man Computer. A program, then, is represented as a sequence of bit-strings, which can be stored in memory or on a computer’s hard disk.

Note that different CPUs have different instruction sets that they can execute directly. Thus, a program written in machine code for an Intel Pentium chip won’t execute properly on a Motorola 68040 chip. Intel has been careful to make the machine codes for its new chip backward-compatible with the machine code for its earlier chips, such as the 80386 and 80486. This means that any machine code program for an 80386 can be executed on a Pentium chip, but the Pentium instruction set may include instructions that will not execute on older chips.

Second-generation: assembly language(s)

Most programmers find it difficult to code directly in numbers. So they assign more memorable names to instructions (like GET, PUT, and STORE in LMC). A definite mapping is defined between these human-friendly instructions (e.g., GET) and numeric codes (e.g., 901). A person writes a program using the words: this is called an assembly language program. Then, a separate computer program, called an assembler, translates the program into assembly language. For example:

LMC Assembly Language
LMC Machine code translations

Get
901

Store 99
399

Get
901

Add 99
199

Put
902

Note that there is a different assembly language for each machine language. In fact, there could be more than one assembly language for the same machine language (e.g., instead of calling the instruction Get, it could be called Grab).

Third-generation: general purpose, high-level languages

There are many programming languages that include more abstract instructions that correspond to more than a single machine-language instruction. Some examples are: COBOL, Fortran, PASCAL, C, C++, LISP, Java, perl, and Javascript. Note that Java and Javascript (Microsoft calls this one Jscript) are completely different programming languages that happen to have the word java in common.

One of the most common high-level instructions is a looping construct that causes the enclosed instructions to be executed multiple times. Recall that to repeatedly execute the same instruction in LMC, you had to write an explicit Jump instruction to go back to an earlier instruction.

Here’s a tiny Javascript program to do that:

<script>

for (i=0; i<10; i++){

 document.write
(”Count= " +i+ ”.
”);
}
</script>
Click here to see a web page that causes this program to be executed.

Compilers and Interpreters

High-level languages are easier for programmers to work with, but CPUs can’t execute them directly. Instead, another computer program (in machine language), executes and as part of its execution either compiles or interprets high-level programs.

Compilers are fairly easy to understand. They translate from high-level languages to machine languages. A compiler is a program that reads as input a program in a high-level language (the source code) and produces as output a program in machine language (the byte code or object code). The object code can then be executed immediately or saved and executed at a later time. Don’t confuse the term object code with object oriented programming, which is a completely separate concept.

A different compiler program is needed for each combination of source language and machine language. However, a single source program may be compiled separately to produce machine language programs for several different platforms. For example, C++ compilers are available for many different platforms. The same source program, written in C++, can be compiled and executed on several different platforms, so long as the program does not make any requests of the operating system (e.g., opening or saving files) that are specific to a particular platform.

Interpreters are a little harder to understand. An interpreter reads in source code and directly produces the output that the source code would produce if it were compiled and executed immediately. Of course, one way to create an interpreter is to make a compiler that immediately executes the source code that it creates, but it’s often simpler to make interpreters that work more directly.

Think of an interpreter as a simulator for a virtual machine. Each high-level programming language includes some instructions that do not correspond to machine instructions of any real CPU. But imagine a virtual CPU that could directly execute an instruction such as looping 10 times. No such virtual machine exists, but an interpreter or emulator program is a simulator for such a virtual machine. It produces the same output that the virtual machine would produce when executing a program in the high-level language. Sometimes the interpreter program is itself called a virtual machine, because it does exactly what a real machine would, if such a machine existed.

Any high-level language can, in principle, be either interpreted or compiled. It is easier to write interpreter programs for some languages than others, and so some languages tend to be thought of as “interpreted” languages. Among these are LISP, visual basic, and Javascript. For example, most Web browsers have an interpreter program for Javascript. This makes it possible to embed a Javascript program in an HTML document and have it automatically executed during the display of the HTML page (recall the sample looping program above).

Java: compiled and interpreted

Java, like other high-level languages, can in principle be either interpreted or compiled. In practice, a hybrid process is used. Sun, the company, has defined, in addition to Java, another programming language called “Java bytecode”. A Java program is first compiled (translated) from Java source code into Java byte code. Then the Java bytecode program is interpreted by a “virtual machine”. Strictly speaking, this is a Java bytecode virtual machine, not a Java virtual machine, but most people don’t make that distinction in conversation or even in articles that you might read.

It is fairly easy to write an interpreter for Java bytecode, and most browser manufacturers have included such an interpreter as part of their browsers. Thus, a programmer writes a program in Java source code (.java files), and compiles it into Java byte code (.class files). The byte code can then be distributed and executed on other machines. One of the nice features of this two-step process is that the program only has to be compiled once, and then can be run on any platform for which a Java bytecode interpreter is available. It is not necessary to compile separately for each platform. As with all interpreters, however, there is a performance penalty. It takes longer to execute a program with an interpreter than to directly execute equivalent machine code. Some early efforts to write word processors and other office applications in Java were later abandoned, in part because they could not make the programs run fast enough.

Take a look at a couple of sample programs. The first program, FirstApplet, causes the string “Hello World” to be displayed at a position on the screen with coordinates (25, 50). The (entire!) source code is shown on the web page. The “class” is defined as an extension of an existing class, called Applet. Lots of things are pre-defined for the class Applet, including the fact that when the program is first executed, a procedure called paint will be invoked. In the FirstApplet class, we specify exactly what should happen when Paint gets executed. In this case, just one line of code gets executed, the one that causes a string to be drawn. Note that lines beginning with // are comments for human readers: they are not executed.

The second program, Scribble, is interactive. Two variables, last_x and last_y, keep track of the last location of the cursor while the mouse button was clicked. When you move the cursor while holding down the mouse button, a line is drawn from your previous location to your current location. This is an event-driven style of programming. In the Applet class (and any extension of it), the method called mouseDown is automatically executed whenever the user clicks the mouse button (an event), and mouseDrag is automatically executed whenever the user moves the mouse while holding the button down (another event). All the programmer has to do is define the instructions to be executed within these methods.

Special Purpose Languages

Beyond the general-purpose languages, there are also special-purpose languages that include even high-level constructs that make it easy to write particular kinds of programs. For example, later in the semester you’ll see SQL, a language for writing database queries. UNIX utilities like SED and AWK make it easy to process semi-structured text files. Some people would also classify Visual Basic and Javascript as special-purpose languages. The dividing line is not clear, since many special-purpose languages also include general-purpose features, like a looping construct. In fact, many programmers who get comfortable with a special-purpose language tend to use that language for programs far outside of the original intentions of the language designer.

