SI540

Notes on Computer Architecture

Paul Resnick

September 24, 1999

You have already explored the Little Man Computer, which provides a very useful base of analogies for understanding how real computers work.

[image: image1.wmf]CPU

I/O

Memory

There are three subsystems of a computer:

· A central processing unit (CPU). It contain registers to store values temporarily. In LMC, there is one register, which is part of the calculator, and another register that acts as an instruction counter, keeping track of the next instruction to execute. In a real computer, the registers store bit strings, not decimal numbers. The CPU also has an arithmetic and Logic Unit (ALU) that can perform operations like addition and subtraction. The CPU has an internal clock that ticks at a fixed rate. There is no “little man”, a CPU just automatically executes the next instruction at all times, and it does so very fast:

· (tick) find memory address of next instruction

· (tick) retrieve instruction from memory

· (tick) decode the instruction

· (tick) fetch argument from memory if necessary

· (tick) execute instruction

· (tick) store result in memory if necessary

The clock speed of a CPU determines how often a new instruction is executed, and is measured in MHz: 300MHz means that a new instruction starts executing 300 million instructions per second!

· Memory. In LMC, this is the blackboard. In real computers, the memory is just one very long bit string.
It is more convenient, however, to think of it as a sequence of locations, where each location contains a bit-string of a fixed length (called the word size). For example, a memory that contained one million locations, each containing 32 bits or 4 bytes, would be 4MB of memory. This is usually implemented with Random Access Memory (RAM), meaning that it is just as fast to read and write to any location in the memory as any other.
Bit strings can be used as addresses that uniquely identify the locations. In LMC, two-digit binary numbers were used as addresses to identify blackboard locations, which meant that the blackboard could be no larger than 10*10=100 locations. If 10-bit strings are used for addresses in a real computer, there can be no more than 210 locations, approximately 1000. If a computer stores 32 bits in each location, it is natural to have addresses that are also 32 bits long, so that one address can fit in one storage location. In that case, there can be at most 232 storage locations, which is approximately 4 billion; since there are 4 bytes stored at each location, that would be 16GB of memory, far more than most PCs have, but less than some large servers have.

· Input/output devices. In LMC, there is a conveyor belt for input and another for output. In real computers, there are several I/O devices, including keyboard, mouse, scanner, and modem or network card for input, and monitor, printer, modem or network card, and speakers for output. An I/O Bus is a set of wires connected to the CPU that I/O devices can also be connected to. For example, current PCs use something called the PCI bus. Earlier PCs have an ISA bus; the PCI bus permits faster communication with I/O devices.
I/O Buses have facilities for sending interrupt signals to the CPU. The CPU, when it receives such an interrupt, suspends its normal processing and starts executing an interrupt-processing routine. This is useful because I/O devices tend to be slow compared to the CPU. The CPU can invoke an I/O operation, and then execute some other useful instructions rather than waiting for the I/O device to respond. Operating systems generally provide the machine code that generates I/O requests and handles the I/O interrupts: the code for interacting with each I/O device is called a device driver.

The Memory Hierarchy

There are actually several technologies for storing bit strings and retrieving them later.

The fastest technology is semiconductor memory, which comes in two flavors. One is generically called RAM, even though most technologies, not just RAM, offer random access. The contents of RAM are lost when the power is turned off. The other is called ROM, which stands for read-only memory. It is memory that the CPU can read, but can not write to (except under special circumstances). It remains intact even without power. A computer stores a small program in ROM whose sole purpose is to read the operating system program from a hard disk into RAM at start up, and then start executing the operating system program.

Hard disks are slower at storing and retrieving data than semiconductor memory. But they are also cheaper per bit of storage. Each bit is stored as a magnetic field, with opposite polarities representing 0 and 1. There are lots of specific locations, arranged on a metal platter. The platter spins around and a special magnetized head can read or write to particular locations as those locations spin by. Disks are divided into tracks, at different radius from the center. The seek time of a hard drive is the average time it takes to move the head to a randomly chosen track. Tracks are divided into sectors. Latency is a measure of how fast the disk spins, which determines how long it takes on average for a sector to rotate to the point where it is under the read/write head.

At every point in the evolution of storage technologies, there have always been faster devices that were more expensive and slower devices that were less expensive. Rather than making a single choice, computer systems usually have a little bit of the fastest memory, more of the next fastest, and even more of the slower memory. For example, a PC usually has some very fast memory that is built into the CPU itself, in the form of registers and a cache (an idea that will be explained soon). It also has a large main memory, or RAM, and an even larger hard disk. (The hard disk has the added advantage over semiconductor RAM of storing data even when the power is turned off). It may also have a CD drive or a tape drive which are even slower, but less expensive than hard disk per MB of storage. Some storage devices, such as floppies, are valuable primarily because of their mobility rather than their lower cost per unit of storage.

Given this portfolio of memory types, a lot of effort goes into moving data back and forth from larger, slower devices to smaller, faster storage devices. One general technique is called caching, where a copy of a subset of the slower memory is stored in the small, fast memory. There are two motivations for this:

· Repetition. Often, if a location from the slow memory is accessed, it will be accessed again soon. So, it may be helpful to keep a copy in the small, fast memory.

· Locality. Often, if a location from the slow memory is accessed, nearby locations will be accessed soon (consider, for example, a program that reads in a character string from a file and writes it out to an output device). It is relatively fast to do a block copy of nearby locations, so when a location is accessed, the nearby locations are copied into the cache as well.

Eventually, the cache fills up, and when new data is added something else has to be discarded (or flushed, as the techies say). There has been a lot of research on different techniques for choosing what to discard from a cache. One of the common policies is to discard the data that has been access least recently (Least Recently Used, or LRU). Another, even simpler policy to implement is first in, first out, or FIFO.

Disk Arrays (RAID)

One recent advance in disk storage is to use arrays of disks, rather than single disks. This can improve reliability and improve speed.

Performance (speed) can be improved through data striping. For example, suppose there are 4 hard disks. Consecutive addresses can identify locations that alternate among the four disks. Thus, four consecutive words of memory can all be access at the same time, since all the disks can operate in parallel. If the consecutive addresses all referred to locations on the same hard disk, then the data would have to be read sequentially, one location after the other. Parallelism is a theme that will recur throughout the course as a way to improve performance.

Disk arrays can also provide redundancy. The same data can simultaneously be stored on more than one disk. Then, if one disk breaks or is temporarily out of service, the data can be accessed from another disk. The simplest form of this is called mirroring, when two disks store exactly the same data. Modern RAID devices are more sophisticated, however, ensuring that data from any one disk can be regenerated from the other disks, without requiring twice as much data storage. On the SI servers, for example, if a hard disk in an array fails, an alarm signal is sent to the computing staff. They can then replace the failed disk, and all of this can happen while the server continues to run, and without anyone losing access to any data at any time. If two disks were fail at the same time, however, then the whole system would fail.

�

