
 Copyright 1999 University of California

 pur-

k mer-
r that

 incor-
vailable

evelop-
forms
e to the

nts are
ernal

stomer
 on
e. Like

ng cart
irements

ith an

price.
ption,

alto-

ate and

bjects
jor data-
ing cart

and
Example of OOP Design: Shopping Cart

by David G. Messerschmitt

Supplementary section for Understanding Networked Applications: A First Course, Morgan
Kaufmann, 1999.

Copyright notice: Permission is granted to copy and distribute this material for educational
poses only, provided that this copyright notice remains attached.

The process of establishing an application architecture can be illustrated by the on-line boo
chant application described in "On-Line Book Selling" in Chapter 3. It was established earlie
a three-tier client-server architecture is natural for this application. Further, this architecture
porates a Web browser in the client, because most consumers already have this software a
and are familiar with using it, and because this contributes to reuse by avoiding a custom d
ment of the client module. The complementary Web server in the application logic tier per
many functions in managing the presentation tier, and also provides a convenient interfac
book merchant-specific functionality in the customer logic through the so-called common gate-
way interchange (CGI).

The second-tier databases will also use off-the-shelf DBMS components. These compone
highly configurable to server this application, including the definition of the number and int
structure of the customer, merchandise, and order databases.

What remains after the choice of these components is the internal decomposition of the cu
logic and fulfillment logic on the application logic tier. This will now be illustrated by focusing
one major module, the shopping cart, which manages the process of ordering merchandis
the remainder of the on-line merchant application, as described in Chapter 9 the shoppi
underwent the conceptualization and analysis phases, where its basic features and requ
were determined, in consonance with the business objectives like providing the customer w
agreeable shopping experience. Some representative features that were identified include:

• Add a book to purchase.

• Display the current books in the shopping cart, including prices, quantity, and total
Examine any one of those books in more detail, including reviewing the author, descri
cover design, and table of contents.

• Change the quantity of a specific book, including removing it from the shopping cart
gether.

• Initiate an order for all the books currently in the shopping cart, and pay for that order.

Of course, one major requirement is that a large number of customers must be able to cre
manage shopping carts, one per customer.

A simplified decomposition of the shopping cart is shown in Figure 1.. There are proxy o
that serve to interface the customer (through the Web server) and to each of the three ma
bases: merchandise, customer, and order. The remaining objects are integral to the shopp
itself.

• An object with class Entry_list actually manages a list of entries in the shopping cart,
Page 1 8/18/99

 Copyright 1999 University of California

l price.
n of

such as
ce by
art.

nt
tomer

er, as

e cus-
e
d
, the

 first

mer by
provides basic functions such as adding, modifying, and deleting entries.

• Each entry in the shopping cart is associated with an instance of an Entry_info object. This
is where the information about the entry is actually stored, such as the quantity and tota
The Entry_list object does not keep such information, as an illustration of separatio
concerns.

• The merchandise information for each entry is kept in a Book_info object. This object keeps
and manages information about the book obtained from the merchandise database,
title and author and unit price. Keeping that information in an object improves performan
avoiding having to return to the database every time the customer views the shopping c

• Each Entry_list object also manages a Customer_info object that keeps tabs on releva
information about the customer who owns that shopping cart, obtained from the cus
database.

The interaction among these objects is largely determined by the actions of the custom
reflected in the interactions initiated by the Customer_interface proxy on the customer’s
behalf. When the customer places the first book in the shopping cart, information about th
tomer is retrieved from the customer database, a Customer_info object is instantiated, and th
information stored in it. Similarly, Book_info and Entry_info objects are instantiated an
loaded with the relevant information—the former with author, title, and ISBN for the book
latter with an indication of the book (including and indication of the Book_info object) and the
quantity. The Entry_list object, which keeps track of all the Entry_info objects and allows
them to be added and deleted, is instantiated and initialized with an indication of the
Entry_info object.

As books are added or deleted or the quantities are changed by the customer, the Entry_list
object manages those changes at the direction of the Customer_interface . Similarly, the
Customer_interface can display the current contents of the shopping cart to the custo
retrieving that information from the Entry_list , which has to consult the Entry_info and

Figure 1. A decomposition of the shopping cart into interacting objects. Arrows indicate
some of the more important interactions among objects.

Customer_info

Customer_interface

CGI interface
to Web server

Entry_list

Customer_database_interface

Book_info
Merchandise_database_interface

Entry_info

Book_infoEntry_info

….

Order_database_interface
Page 2 8/18/99

 Copyright 1999 University of California

antity
 to be
eturns
eth-

t is data)
, while

ct of the
 the

ke the

 actu-

d into
Book_info objects in turn.

The object attributes and interface can be illustrated using the Entry_info class. Its attributes
include everything having to do with one item to be purchased, including the identity and qu
of the book being ordered. Associated with these attributes will be methods allowing them
set or modified and examined. In addition, it would be convenient to have a method that r
the total price of that item (book price times quantity). It might therefore have the following m
ods:

set_book: Book_info book → ;
examine_book: → Book_info book;
set_quantity: Integer number → ;
examine_quantity: → Integer number;
examine_price: → Dollars total_price;

There are several things to note. Each parameter or return has an associated data type (if i
or class (if it is an object). Methods setting an attribute have a parameter but no return
methods examining an attribute have a return but no parameter. The examine_price method
does more than set or examine an attribute, it has to calculate the total price as the produ
unit price and the quantity. It will not be able to complete its action without examining
Book_info object to determine the unit price.

Suppose another object wanted to know the title of the book being ordered? It would invo
examine_book method, which would return a Book_info object. That Book_info object would
presumably have a method that returns the title of the book.

While this example conveys the flavor of an OOP architecture, it avoids numerous details in
ally programming the application, some of which are touched on in Chapter 11.

Discussion

D1 Discuss some other ways the shopping cart application could be decompose
interacting objects. Use this to illustrate that there is no single right approach.
Page 3 8/18/99

