
 Copyright 1999 University of California

 pur-

mposi-
ful con-

ress,
refer-
 part of

ing the

orm of
se more
dation.
nse pro-
r the

ct that

ted—

f
enever

s the
h the

ips
More on OOP

by David G. Messerschmitt

Supplementary section for Understanding Networked Applications: A First Course, Morgan
Kaufmann, 1999.

Copyright notice: Permission is granted to copy and distribute this material for educational
poses only, provided that this copyright notice remains attached.

Object-oriented programming methodology is considerably more than just an object deco
tion as described in Chapter 10. This section describes some more sophisticated and use
cepts in OOP, hoping to convey the richness and subtitles of this programming style.

Locating Objects
In order to interact with a server, a client object must be able to locate it through a name, add
or reference. In OOP, objects are normally located by reference. Any client must possess a
ence to the server in order to invoke one of its methods, and must supply that reference as
the invocation. Supplying the parameters and action to the object reference and return
actions are roles for the infrastructure.

Complex Protocols in OOP
The core interaction among objects in OOP is the method invocation, which is a particular f
a request-response protocol. This does not rule out more sophisticated protocols, becau
complex or simpler protocols can be constructed using the method invocation as a foun
The send-receive protocol is the simplest, because it is a special case of the request-respo
tocol with no response. Thus, it can be implemented by simply specifying no returns fo
method invocation.

A more complicated case can be illustrated by the publish-subscribe protocol. A server obje
is willing to serve as a publisher can simply provide a subscribe method, as in:

subscribe: description, subscriber, subscription_ID → ;
where descr i ption conveys the details of responses desired, subscriber is a reference to the
subscriber—without which the publisher has no way to know where the subscription origina
and subscri be_ID is an identifier that is unique to subscriber for that specific subscription.
It is the responsibility of the publisher to retain subscribe_ID and return it as a parameter o
every response. The subscriber must also provide a method for the publisher to invoke wh
it has a response; for this purpose, it provides a callba ck method,

callback: subscribe_ID, information → ;
The parameter information convey the desired information, and subscrib e_ID allows the
subscriber to uniquely identity the subscription associated with that information. This allow
subscriber to register subscriptions with multiple publishers, or multiple subscriptions wit
same publisher, with all those subscriptions sharing the same callback method while keeping
straight those responses.

Two Types of Relationships: “Is A” and “Part Of”
Object instances and classes illustrate that there are actually two complementary relationsh
Page 1 8/18/99

 Copyright 1999 University of California

o mod-
. The
epara-

ces).

ose of
ve
ntly. A
ractical
ibing it

the
s com-
trinos.

nd the
roper-

stood,
, which
sed into

r 6: The
endent)

ilarly,

posi-
l reac-

action.
at does
rela-

ializa-
n as its

of the

rofes-
rarchy
among objects, called respectively the “part of” and “is a” relationship.

In Chapter 4, the architecture of a system was described in terms of its decomposition int
ules. This decomposition is a “part of” relationship—each module is a “part of” the system
primary purpose of the “part of” relationship, as described in Table 6.1 on page 135, is the s
tion of concerns. In OOP, an application is decomposed into objects (actually object instan

The object class illustrates a complementary “is a” relationship among objects. The purp
this “is a” relationship is an economy of expression [Boo94]. If a set of object instances beha
identically given identical interactions, there is no sense implementing each one independe
measure of software reuse can be obtained by implementing the class just once—or, in p
terms, this means specifying and documenting its interface and writing the programs descr
just once.

Example: Cosmology illustrates well the role of “part of” and “is a” relationships. Matter in
universe is decomposed into an unimaginatively large number of particles, most matter i
posed of just four types of elementary particles: protons, neutrons, electrons, and neu
There are only four distinct forces that bind or repel them: gravity, electromagnetism, a
strong and weak nuclear forces. Each proton, for example, is thought to have identical p
ties to all other protons—an example of economy of expression.

The cosmos also illustrates a hierarchical “part of” relation. For reasons not entirely under
the matter in the universe is decomposed into galaxies, which are decomposed into stars
are decomposed into molecules, which are decomposed into atoms, which are decompo
“elementary” particles (which have no further decomposition) [Smo97].

In summary, the goal of architecture design can be stated more completely than in Chapte
decomposition should be chosen to either separate concerns (make implementation indep
or to make concerns identical (only one implementation required).

Inheritance
The “part of” relationship is often hierarchical—modules decomposed into modules. Sim
“is a” relationships can also be hierarchical.

Example: In the physical world, an atom shares properties with all other atoms—a decom
tion into electrons, protons, neutrons, and electrons, the ability to participate in chemica
tions, etc. However, to say an entity “is an” atom does not specify all relevant properties, like its
number of protons, neutrons, and electrons, or exactly how it will behave in a chemical re
On the other hand, to say an entity is a gold atom or a lead atom specializes it in a way th
specify completely its properties. A gold atom “is an” atom illustrates a hierarchical “is a”
tionship. This relationship is one of elaboration and specialization.

Observe in this example that there are actually two distinct “is a” relationships. One is spec
tion, and the other is instantiation. Both of these relationships has economy of expressio
goal.

In OOP, the specialization form of “is a” relationship is called class inheritance. A more special-
ized subclass is said to inherit a superclass (and the subclass is said to be derived from the super-
class). The terminology follows the observation that the subclass inherits the properties
more general superclass.

Analogy: The health professions have an “is a” hierarchy as illustrated in Figure 1.. Each p
sion is a more specialized version of the one above it. The actual number of levels of hie
Page 2 8/18/99

 Copyright 1999 University of California

ating
f chil-
o
dge to

al meth-
he last

 A
ities"
ich can
g

s

 might

s

tem.
is larger. For example, a pediatric oncologist “is a” pediatrician who specializes in tre
tumors in children, while the pediatrician is a physician who specializes in the diseases o
dren. Each specialization requires the addition of increasingly specialized knowledge. T
become a pediatric oncologist, you first become a physician, then add specialized knowle
become a pediatrician, and then add further knowledge to become a pediatric oncologist.

In practical terms, a subclass incorporates the methods of its superclass and adds addition
ods. Thus, specialization means “addition” of new data and methods, as illustrated by t
analogy. A subclass may also modify methods it inherits from its superclass.

Example: A simple example of inheritance is shown in Figure 2.. An Auto , Bicycle , and Boat
are all subclass of class Vehicle , with the common property of moving people or goods.
Vehicle models a vehicle behavior (see "Relationship of Software and Real-World Ent
(Section on page 264)), and has two representative attributes—location and velocity, wh
be ascertained by the methods shown. Class Vehicle captures everything in common amon
all vehicles. Particular Vehicle ’s also have specialized characteristics. For example, the Boat
may need a bail_water method, which makes no sense in the context of the Auto or Bicycle.

The class Boat has three methods shown in Figure 2.: whatis_location ,
whatis_velocity , and bail_water . The first two are inherited from Vehicle and the third
is added in the subclass. It would also be possible for class Boat to redefine one of the method
defined in its superclass Vehicle . For example, the whatis_velocity method for class
Boat must take into account water currents—not an issue with land vehicles—and thus
have to model its velocity differently.

It is important to note that “is a” and “part of” relationships coexist in a system. Every module ha
both relationships to other modules. A large number of such relationships may coexist.

Example: Take the example of a hospital:

• St. Mary's “is a” hospital, which “is a” corporation and “is a part of” the health care sys
• George “is a” nurse (which “is a” health care worker) and “a part of” St. Mary's.

Figure 1. Hierarchy of “is a” relationships

H ig h ly in co m p le te c la ss if ica tio n o f p ro fess io ns

D e n tist

P e d iatric n u rse

N u rse

R a d iolo g ist O n co lo g ist

P h ys ic ian

M e d ica l w o rker

W o rke r
Page 3 8/18/99

 Copyright 1999 University of California

wen

" (Sec-
peated

e of a
role in
lso by
ata visi-
e visible.

o an
termine

es, and
of

fer only

ct, the
.

on of
• Gwen Sickly “is a” person, who it happens “is a” patient and “is a part” of St. Mary's. G
is also “a part of” the Sickly family, which “is a” human family.

One goal of inheritance is economy of expression in software reuse (see "Software Reuse
tion 10.1.2 on page 256)). All the effort applied to implementing a superclass need not be re
for subclasses.

State
The term state is used in a number of contexts, including OOP. In pragmatic terms, the stat
module is the entirety of the data that it stores. Functionally, the state has an important
influencing the behavior of a module, which is impacted not only by external events but a
state. Every object contains internal data, together with methods that change that data. D
ble at the interface are attributes, but there may also be encapsulated data that is not mad
The sum total of the data in the object (visible and encapsulated) constitutes the state.

Analogy: The state of a battery-operated wallclock would include the displayed time (als
attribute) and the energy stored in its battery (which is encapsulated, but necessary to de
when the clock stops).

When a method is invoked on a server, the client state may be affected by the return valu
the server state may be directly affected. The method interaction typically affects the state both
objects. The state has several complementary interpretations:

• Two instances of the same class have the same interface and implementation. They dif
in their states, which may be different.

• The state reflects all the external interactions of the object since it was created. In fa
state constitutes all the data the object keeps around as a record of its past interactions

• The state affects an object’s future behavior when it interacts with other objects.

Analogy: An example from the physical world would be a chess game. The current positi

bail_waterreplace_petalfill_radiator

whatis_location
whatis_velocityclass Vehicle

class Auto class Bicycle class Boat

Figure 2. An example of inheritance in modeling vehicles. The arrows point from sub-
class to superclass, and each class is labeled with representative methods.
Page 4 8/18/99

 Copyright 1999 University of California

te of the
given it

ty keeps

 much
pplies

ewed at
late or

 to an
share it
rder to
r, then

ist of
ry, etc.

he

, but
the pieces on the board summarizes the impact of all past moves, and constitutes the sta
game. Although the precise sequence of past moves cannot be inferred from that state,
and a specified sequence of future moves the resultant state can be predicted.

The concept of state applies to circumstances other than objects as well. Whenever an enti
around data which may affect its future behavior, that is state.

Example: The Web server that keeps track of information on a particular user, such as how
money he has spent in the past, is maintaining state for that user. This terminology a
whether or not the Web server is an object.

Object Encapsulation
Decomposition of a system into subsystems is often hierarchical, so the system can be vi
different granularities. In OOP, this hierarchy is achieved by allowing one object to encapsu
“own” other objects, which are not visible or accessible from the outside.

As shown in Figure 3., encapsulation is determined by the number of existing references
object. If exactly one reference exists, then whoever holds that reference and does not
with anybody else encapsulates the referenced object—no other clients know about it in o
interact with it. On the other hand, if two (or more) clients possess a reference to a serve
they can each interact with it, and it is not encapsulated.

Example: An object modeling the department in an organization would probably have a l
employees in that department. Each employee’s information such as name, age, sala
could be represented by an Employee object. If the Department object, and only the
Department object, maintains references to each of those Employee objects, then they are
encapsulated. To find out about a particular Employee , a client has to pose that question to t
Employee ’s Department , not directly to the Employee .

Polymorphism
It is common for objects with a hierarchical “is a” relationship to have common methods

Figure 3. Objects can interact with any other objects for which it has a reference. If only
one reference exists, then that object is encapsulated by the object with that reference.

A has a reference to B

Other objects
can also have
references to B

A encapsulates B

No other objects possess
references to B; only A
can interact with B

A

A

AA
Page 5 8/18/99

 Copyright 1999 University of California

rfor-
teering
et, the
 accel-

 that is
etend”
he sub-
abstract
d, new

-
lized

able to
menta-
-

which behave differently. This is a rough definition of polymorphism. Polymorphism is one of the
most subtle—but also most powerful—features of OOP.

Analogy: Automobile manufacturers distinguish their cars in various ways—including pe
mance, features, esthetics, etc.—but they all have a very similar interface to the driver (s
wheel, brake and accelerator petals, etc). Any driver can immediately drive any auto. Y
different autos behave differently when that interface is exercised. For example, one may
erate more quickly than another, even for the same depression of the accelerator petal.

Polymorphism is achieved in the context of inheritance. A superclass may have a method
redefined (specialized) within different subclasses. Polymorphism means that we might “pr
that an object is an instance of its superclass, but the actual behavior is determined by t
class. Polymorphism is so useful because it allows programs to be constructed around
views of objects; later, when instances of objects drawn from subclasses are substitute
behaviors result without any other program modification.

Example: A class Vehicle would probably include an accelerate() method that causes it to
gain speed. As shown in Figure 4., subclasses Auto , Bicycle , and Boat would implement
accelerate() differently. For example, the Auto and Bicycle might simply release the
brake if the Vehicle is coasting downhill, whereas a Boat doesn’t even have a brake. A
object-oriented application might deal with Vehicle ’s without even knowing about their sub
classes. When a Vehicle is accelerated, the object instance will substitute its own specia
behavior depending on its subclass. New subclasses of Vehicle ’s can be added without any
other changes to the program.

Object Interfaces
The class of an object comprises both an interface and an implementation, and it is valu
separate these two aspects. A client is concerned with a server’s interface, but not its imple
tion. For this purpose, an interface definition language (IDL)—simpler than a system program

accelerateaccelerateaccelerate

accelerateclass Vehicle

class Auto class Bicycle class Boat

Figure 4. Polymorphism is illustrated by several types of vehicles. A vehicle could be
modeled without knowing whether the vehicle was an auto, bicycle, or boat.
Page 6 8/18/99

 Copyright 1999 University of California

s. One
ssues.
efined
n of this

 Each
e rep-
erived
ds and

strated

nted

blish-
ish-sub-
rts this

ance-
r to an

nce
t their
ming language—describes object interfaces but without introducing implementation issue
advantage of an IDL is that it is simpler, because it deliberately ignores all implementation i
(IDL’s are also important in distributed object management, see Chapter 16.) One IDL is d
in the CORBA standard discussed in Chapter 16 (see the book homepage for a descriptio
IDL with examples).

Example: The interfaces of classes sharing “is a” relationships are illustrated in Figure 5..
interface is outlined with a dotted line (to distinguish it from a class) and labeled with som
resentative methods and attributes. Interface inheritance—denoted by arrows from a d
interface to its base interface—simply means that the derived interface has all the metho
attributes of the base, plus more methods and attributes that further specialize it. Also illu
is multiple interface inheritance, since interface Tax_form inherits two base interfaces, Form
and Printable , acquiring all the methods and attributes of both. Schedule_A and
Form_1040 are each more specialized Tax_form ’s that inherit all its methods and attributes.

This example also illustrates polymorphism. Suppose there is a repository that stores Form’s
and a print server that arranges to print all Printable ’s. Then any Tax_form , including
Schedule_A and Form_1040 and any others defined in the future, can be stored or pri
without modifying either the repository or print server.

Events
"Complex Protocols in OOP" (Section on page 1) illustrated how a more complicated pu
subscribe protocol can be implemented using request-response as a building block. Publ
scribe protocols are so useful and widely used that component technology typically suppo
in the infrastructure.

A component and its interface are illustrated in Figure 6.. At this level of detail (before enh
ments like component metadata are considered) the component interface looks very simila
object interface. The primary difference is that the component specifically publishes events.
Events are used, albeit on an ad hoc basis, in object systems. An event is an action or occurre
that a component publishes for the benefit of other components. Other components, a

Figure 5. An illustrate of interfaces and multiple interface inheritance.

taxpayer_name

print()

interface Form

interface Tax_form

set_deduction() set_income()

interface Schedule_A interface Form_1040

isA()
add_field()

interface Printable
Page 7 8/18/99

 Copyright 1999 University of California

"User

 might
r “with

s:

ce pro-

alance,
f that.

e sub-

y once.
the fol-

mer’s
market-
t falls
t may

 manu-
ts, if the
option, subscribe to notifications of the event (similar to information management, see
Awareness: Notifications" on page 41).

A typical form of specification would be an attribute crossing a threshold.

Example: Suppose a component models a bank account. Examples of event specifications
be “with the latest deposit, the balance in the account has just exceeded $1,000,000” o
the latest withdrawal the balance would have been negative so it was rejected”.

When an event occurs, components that have subscribed are notified. This works as follow

• The component metadata describes any available events, and the component interfa
vides a mechanism to subscribe to any event.

• A subscribing component provides a parameterization (the threshold on the account b
for instance), but does not have to identify itself because the infrastructure takes care o

• During execution, a component notes all events for which there is one or more activ
scription, and notifies all the subscribers whenever that event occurs.

With events, a client doesn’t have to repeatedly query a server, but need subscribe onl
Events are useful in many contexts, but particularly business applications as illustrated by
lowing example.

Example: A bank credit department may ask to be notified whenever a particular custo
bank balance falls below zero, because that customer is deemed a collection problem. A
ing department may ask for notification whenever the weekly sales of a particular produc
below some threshold to trigger a reevaluation of marketing plans. A inventory departmen
desire notification is a supplier ‘s production is affected by some natural disaster, so that
facturing forecasts can be adjusted. These and similar cases are easily handled by even
designers of relevant components have anticipated the need.

Figure 6. External view of a software component. There is no internal view.

Method 1

Method 3

Method 2

Event 1

Event 2

Component

Attributes

...

...
Page 8 8/18/99

 Copyright 1999 University of California

, the

his a

on (see
s book
r, and a

address,
eir own

s and

 by

ely
tion

ell-

ter-

t is
 be

ed
con-
ses.

per-
Discussion

D1 Discuss the use of “part of” and “is a” relationships in biology, the social sciences
economy and commerce.

D2 Discuss the use of polymorphism in physical-world products and services. Is t
valuable way to think about the organization of products and services, or not?

Examples
The ides of inheritance and polymorphism can be illustrated by a couple examples.

Address Book
Suppose the goal is to implement an address book as an adjunct to an email applicati
"Remote Conferencing with Shared Workspace" (Section 2.2.3 on page 23)). The addres
manages a list of email recipients, keeping information like name, address, phone numbe
convenient nickname for each recipient. As shown in Figure 7., an object with interface Entry
can be used to manage the information associated with each recipient. Since the name,
and phone number are widely used in many applications, they are each represented by th
objects, whose interfaces are called Name, Address , and Phone_number respectively. Those
three interfaces are inherited—with the nickname and email address added—to yield the Entry
interface. This illustrates something that has not be discussed previously—multiple inheritance.
Entry inherits three interfaces, which simply means that it gathers together the attribute
methods of all those interfaces, and then adds its own specialized attributes and methods.

The address book has to manage a list of entries—another generic function that can be shared
many applications. Thus, as shown in Figure 8., the interface Address_book can inherit a List

How OOP Contains Complexity

It is useful to review how OOP assists in containing complexity:

• Modularity. OOP encourages the decomposition of the application into modules, nam
objects. Hierarchical decomposition is supported (albeit rather crudely) by encapsula
of other objects by holding exclusive references.

• Interface. Each object has an interface that allows other objects to interact with it in w
defined and well-documented ways.

• Abstraction. The programmer can carefully choose what is displayed at an object in
face, and choose to hide internal details.

• Encapsulation. Nothing internal to an object is accessible from the outside except wha
explicitly embodied in the methods at the interface. Implementation details can
changed without affecting interaction with other objects.

• Class. An economy of expression—which can reduce implementation effort—is achiev
by implementing a class once and instantiating it many times. Inheritance enhances e
omy of expression by implementing once what is common among a set of related clas

• Polymorphism. Subclasses can be hidden from a client object, which sees only the su
class interface, allowing different subclass behaviors to be automatically substituted.
Page 9 8/18/99

 Copyright 1999 University of California

any
rches

h it

e

interface. A List exploits polymorphism to manage a list of many objects (with literally
interface). The Address_book adds methods specific to the email application, such as sea
for specific last names and nicknames.

Shopping Cart
In the shopping cart object architecture, the Customer_info and Entry_info instances are
encapsulated in Entry_list . The latter object maintains references to those objects whic
does not share with others. All inquires from Customer_interface are handled by appropriate
methods of Entry_list , which may in turn consult its encapsulated objects.

Entry_list inherits the same List class as the Address_book , adding methods specific to th

first_name
middle_name

last_name

Name street_addr
city

state
country

mail_code

Address

local_number
city_code

country_code
dial_prefix

Phone_number

nickname
email_address

Entry

Figure 7. Interface inheritance for an address book entry object.

number_of_objects
add()

iterate_current()
delete()

current()

List

entry_with_lastname?()
entry_with_nickname?()

Address_book

Figure 8. The address book object interface can be inherited from a generic list inter-
Page 10 8/18/99

 Copyright 1999 University of California

r more
e send-

rchical

ts past

 substi-

 idea,

escribe

ld be
shopping cart like searching on authors or book titles.

Review
Although the method invocation directly supports a request-response protocol, simpler o
complex protocols can be realized using the message. Common examples include th
receive (message) and publish-subscribe (event notification).

The instances of a class are an example of an “is a” relationship, which can be hiera
through inheritance. Decomposition leads to a “part of” relationship.

State is the collective data stored in an object, reflecting all the information it keeps about i
history. Knowledge of state is needed to predict future behavior.

Polymorphism allows the substitution of a superclass for a subclass, allowing subclasses to
tute distinct behaviors.

Concepts
Object-oriented programming:

• Object: attribute, method, interface, state, and instance

• Class: instance, inheritance, and polymorphism

• “is a” relationships: specialization and instantiation

• “part of” relationships: hierarchical decomposition

• Events

Exercises
E1. For each of the following ideas, give two examples of physical-world objects that illustrate the

and tell how they illustrate the idea.

a. State

b. The instantiation type of “is a” relation

c. The specialization type of “is a” relation

d. “part of” relation

e. Polymorphism

E2. Even though the objects in each collection below undoubtedly don’t belong to the same class, d
briefly what the objects have in common that could be captured in a superclass.

a. Tax form, driver's license, house

b. Tennis racket, baseball bat, shovel

c. Box of chocolates, floppy disk, automobile trunk

d. Physician, nurse, patient

E3. Define an inheritance hierarchy for any one of the following. Try to define classes that wou
reusable.

a. Vending machines

b. Textbooks in a campus bookstore

c. Classes in a university

d. Food items in a cafeteria
Page 11 8/18/99

 Copyright 1999 University of California

l-world

 to the
ssion.
f your

te, but

 a” and
r any

ets, and
ining

llowing

for each
terface,

n-

to

e

E4. Suppose that you were writing software using objects to model or represent the following rea
objects. What would constitute their state?

a. Television set

b. Automobile

c. Bank account

d. Flashlight

E5. Develop a hierarchy of “is a” relationships for transportation vehicles. Pay particular attention
number of levels of hierarchy you believe is appropriate to maximize the economy of expre
Include at least 8-10 different classes of vehicles in your hierarchy. Briefly justify the features o
design.

E6. Create an “is a” hierarchy for each of the following. Your hierarchy doesn’t need to be comple
should have representative examples.

a. Ways for two people to communicate

b. Methods of payment in commercial transactions

E7. The point of this problem is that one object can participate simultaneously in more than one “is
“part of” hierarchies. Illustrate this, by creating some partial hierarchies including this object, fo
two of the following:

a. A house in San Francisco

b. A rock in the Berkeley hills

c. A painting in The Louvre art museum in Paris

E8. Give three examples not mentioned in the chapter of polymorphism in real-world objects.

E9. Assume you define software classes designed to serve as proxies for electronic pianos, trump
drums in a “digital band” application. Describe briefly how polymorphism would be valuable in def
these classes and their superclass “musical instruments”.

E10. State how polymorphism could be used to advantage for objects modeling each of the fo
combinations of classes.

a. Radio, television, and book

b. Warehouse, bookstore, automobile dealership

c. Piano, trumpet, drum

E11. For any one of the following examples, design a set of classes and an interface specification
class, taking advantage of inheritance and polymorphism. There is no need to design a detailed in
but rather it suffices to illustrate how inheritance and polymorphism are helpful.

a. An inventory of books maintained by the on-line book merchant books4u.com described in "O
line Book Selling" (Section 3.1.2 on page 55)

b. Different forms of monetary value used in "On-line Stock Trading" (Section 3.1.3 on page 57)
represent money

c. Different types of flowers in the catalog of the "Floral Delivery Service" (Section 3.1.4 on pag
58)
Page 12 8/18/99

