[1 Copyright 1999 University of California

More on OOP

by David G. Messerschmitt

Supplementary section fdgnderstanding Networked Applications: A First Courséorgan
Kaufmann, 1999.

Copyright notice: Permission is granted to copy and distribute this material for educational pur-
poses on, provided that this copyright notice remains attached.

Object-oriented programming methodology is considerably more than just an object decomposi-

tion as described in Chapter 10. This section describes some more sophisticated and useful con-
cepts in O®@, hoping to convey the richness and subtitles of this programming style.

Locating Objects

In order to interact with a seme client object must be able to locate it through a name, address,

or reference. In OB objects are normally located by reference. Any client must possess a refer-
ence to the server in order to invoke one of its methods, and must supply that reference as part of
the invocation. Supplying the parameters and action to the object reference and returning the
actions are roles for the infrastructure.

Complex Protocols in OOP

The core interaction among objects in OOP is the method invocation, which is a particular form of

a request-response protocol. This does not rule out more sophisticated protocols, because more
complex or simpler protocols can be constructed using the method invocation as a foundation.
The send-receive protocol is the simplest, because it is a special case of the request-response pro-
tocol with no response. Thus, it can be implemented by simply specifying no returns for the
method invocation.

A more complicated case can be illustrated by the publish-subscribe protocol. A server object that
is willing to serve as a publisher can simply provadeibscribe method, as in:

subscribe: description, subscriber, subscription_ID -
wheredescr i ption conveys the details of responses desieloscriber is a reference to the
subscriber—without which the publisher has no way to know where the subscription originated—
and subscri be_ID is an identifier that isinique tosubscriber for that specific subscription.
It is the responsibility of the publisher to retairbscribe_ID and return it as a parameter of
every response. The subscriber must also provide a method for the publisher to invoke whenever
it has a response; for this purpose, it providesilaa ck method,

callback: subscribe_ID, information -

The parameteinformation convey the desired information, asdbscrib e_ID allows the
subscriber to uniquely identity the subscription associated with that information. This allows the
subscriber to register subscriptions with multiple publishers, or multiple subscriptions with the
same publishre with all those sbscriptions sharing the samallback method while keeping
straight those responses.

Two Types of Relationships: “Is A” and “Part Of”
Object instances and class#ustrate that there are actually two complementary relationships

Page 1 8/18/99

[1 Copyright 1999 University of California

among objects, called respectively the “part of” and “is a” relationship.

In Chapter 4, the architecture of a system was described in terms of its decomposition into mod-
ules. This decomposition is a “part of” relationship—each module is a “part of” the system. The
primary purpose of the “part of” relationship, as described in Table 6.1 on page 135, is the separa-
tion of concerns. In OOP, an application is decomposed into objects (actually object instances).

The object class illustrates a complementary “is a” relationship among objects. The purpose of
this “is a” relationship is aeconomy of expressiqBoo94]. If a set of object instances behave
identically given identical interactions, there is no sense implementing each one independently. A
measure of software reuse can be obtained by implementing the class just once—or, in practical
terms, this means specifying and documenting its interface and writing the programs describing it
just once.

Example: Cosmology illustrates well the role of “part of” and “is a” relationships. Matter in the
universe is decomposed into an unimaginatively large number of particles, most matter is com-
posed of just four types of elementary particles: protons, neutrons, electrons, and neutrinos.
There are only four distinct forces that bind or repel them: gravity, electromagnetism, and the
strong and weak nuclear forces. Each proton, for example, is thought to have identical proper-
ties to all other protons—an example of economy of expression.

The cosmos also illustrates a hierarchical “part of” relation. For reasons not entirely understood,
the matter in the universe is decomposed into galaxies, which are decomposed into stars, which
are decomposed into molecules, which are decomposed into atoms, which are decomposed into
“elementary” particles (which have no further decomposition) [Smo97].

In summary, the goal of architecture design can be stated more completely than in Chapter 6: The
decomposition should be chosen to either separate concerns (make implementation independent)
or to make concerns identical (only one implementation required).

Inheritance

The “part of” relationship is often hierarchical—modules decomposed into modules. Similarly,
“Is @” relationships can also be hierarchical.

Example: In the physical world, an atom shares properties with all other atoms—a decomposi-
tion into electrons, protons, neutrons, and electrons, the ability to participate in chemical reac-
tions, etc. However, to say an entity “is an” atom does not spadtifglevant properties, like its
number of protons, neutrons, and electrons, or exactly how it will behave in a chemical reaction.
On the other hand, to say an entity is a gold atom or a lead atom specializes it in a way that does
specify completely its properties. A gold atom “is an” atom illustrates a hierarchical “is a” rela-
tionship. This relationship is one of elaboration and specialization.

Observe in this example that there are actually two distinct “is a” relationships. One is specializa-

tion, and the other is instantiation. Both of these relationships has economy of expression as its

goal.

In OOP, the specialization form of “is a” relationship is cattdsinheritance A more special-

izedsubclasgs said to inherit auperclasgand the subclass is said todexivedfrom the super-

class). The terminology follows the observation that the subclass inherits the properties of the

more general superclass.

Analogy: The health professions have an “is a” hierarchy as illustrated in Figure 1.. Each profes-
sion is a more specialized version of the one above it. The actual number of levels of hierarchy

Page 2 8/18/99

[1 Copyright 1999 University of California

Highly incomplete classification of professions

Medical worker

Dentist | | Nurse |

|Pediatricnurse|| Radiologist || Oncologist |

Figure 1. Hierarchy of “is a” relationships

is larger. For example, a pediatric oncologist “is a” pediatrician who specializes in treating
tumors in children, while the pediatrician is a physician who specializes in the diseases of chil-
dren. Each specialization requires taedition of increasingly specialized knowledge. To
become a pediatric oncologist, you first become a physician, then add specialized knowledge to
become a pediatrician, and then add further knowledge to become a pediatric oncologist.

In practical terms, a subclass incorporates the methods of its superclass and adds additional meth-
ods. Thus, specialization means “addition” of new data and methods, as illustrated by the last
analogy. A subclass may alsmdifymethods it inherits from its superclass.

Example: A simple example of inheritance is shown in Figure 2.AAt , Bicycle , andBoat
are all subclass of clasghicle , with the common property of moving people or goods. A
Vehicle models a vehicle behavior (see "Relationship of Software and Real-World Entities"
(Section on page 264)), and has two representative attributes—Ilocation and velocity, which can
be ascertained by the methods shown. Clasicle captures everything in common among
all vehicles. Particulavehicle ’s also have specialized characteristics. For exampl&die
may need &ail_water method, which makes no sense in the context ohtke or Bicycle.

The class Boat has three methods shown in Figure 2uhatis_location ,
whatis_velocity , andbail_water . The first two are inherited fronehicle and the third

is added in the subclass. It would also be possible for Btassto redefine one of the methods
defined in its superclasgehicle . For example, thevhatis_velocity method for class

Boat must take into account water currents—not an issue with land vehicles—and thus might
have to model its velocity differently.

It is important to note that “is a” and “part of” relationshgoexistin a system. Every module has
both relationships to other modules. A large number of such relationships may coexist.

Example: Take the example of a hospital:

» St. Mary's “is a” hospital, which “is a” corporation and “is a part of’ the health care system.
» George “is a” nurse (which “is a” health care worker) and “a part of” St. Mary's.

Page 3 8/18/99

[1 Copyright 1999 University of California

whatis_location
whatis_velocity

7

fill_radiator ‘

class Vehicle

replace_petal ‘ bail_water

class Auto class Bicycle class Boat

Figure 2. An example of inheritance in modeling vehicles. The arrows point from sub-
class to superclass, and each class is labeled with representative methods.

» Gwen Sickly “is a” person, who it happens “is a” patient and “is a part” of St. Mary's. Gwen
is also “a part of” the Sickly family, which “is @” human family.
One goal of inheritance is economy of expression in software reuse (see "Software Reuse" (Sec-
tion 10.1.2 on page 256)). All the effort applied to implementing a superclass need not be repeated
for subclasses.

State

The termstateis used in a number of contexts, including OOP. In pragmatic terms, the state of a
module is the entirety of the data that it stores. Functionally, the state has an important role in
influencing the behavior of a module, which is impacted not only by external events but also by
state. Every object contains internal data, together with methods that change that data. Data visi-
ble at the interface are attributes, but there may also be encapsulated data that is not made visible.
The sum total of the data in the object (visible and encapsulated) constitigtgehe

Analogy: The state of a battery-operated wallclock would include the displayed time (also an
attribute) and the energy stored in its battery (which is encapsulated, but necessary to determine
when the clock stops).

When a method is invoked on a server, the client state may be affected by the return values, and
the server state may be directly affected. The method interaction typically affects the Istelte of
objects. The state has several complementary interpretations:

» Two instances of the same class have the same interface and implementation. They differ only
in their states, which may be different.

» The state reflects all the external interactions of the object since it was created. In fact, the
state constitutes all the data the object keeps around as a record of its past interactions.

» The state affects an object’s future behavior when it interacts with other objects.
Analogy: An example from the physical world would be a chess game. The current position of

Page 4 8/18/99

[1 Copyright 1999 University of California

Other objects
can also have
references to B

No other objects possess
references to B; only A
can interact with B
A encapsulates B

Figure 3. Objects can interact with any other objects for which it has a reference. If only
one reference exists, then that object is encapsulated by the object with that reference.

the pieces on the board summarizes the impact of all past moves, and constitutes the state of the
game. Although the precise sequence of past moves cannot be inferred from that state, given it
and a specified sequence of future moves the resultant state can be predicted.

The concept of state applies to circumstances other than objects as well. Whenever an entity keeps
around data which may affect its future behavior, that is state.

Example: The Web server that keeps track of information on a particular user, such as how much
money he has spent in the past, is maintaining state for that user. This terminology applies
whether or not the Web server is an object.

Object Encapsulation

Decomposition of a system into subsystems is often hierarchical, so the system can be viewed at
different granularities. In OOP, this hierarchy is achieved by allowing one object to encapsulate or
“‘own” other objects, which are not visible or accessible from the outside.

As shown in Figure 3., encapsulation is determined by the number of existing references to an
object. If exactly one reference exists, then whoever holds that reference and does not share it
with anybody else encapsulates the referenced object—no other clients know about it in order to
interact with it. On the other hand, if two (or more) clients possess a reference to a server, then
they can each interact with it, and it is not encapsulated.

Example: An object modeling the department in an organization would probably have a list of
employees in that department. Each employee’s information such as name, age, salary, etc.
could be represented by a@mployee object. If the Department object, and only the
Department object, maintains references to each of tHeegloyee objects, then they are
encapsulated. To find out about a partic@#aployee , a client has to pose that question to the
Employee 's Department , not directly to th&mployee .

Polymorphism
It is common for objects with a hierarchical “is a” relationship to have common methods, but

Page 5 8/18/99

[1 Copyright 1999 University of California

accelerate
/ |

accelerate ‘ ‘ accelerate ‘ accelerate

class Vehicle

class Auto class Bicycle class Boat

Figure 4. Polymorphism is illustrated by several types of vehicles. A vehicle could be
modeled without knowing whether the vehicle was an auto, bicycle, or boat.

which behave differently. This is a rough definitiorpofymorphismPolymorphism is one of the
most subtle—but also most powerful—features of OOP.

Analogy: Automobile manufacturers distinguish their cars in various ways—including perfor-
mance, features, esthetics, etc.—but they all have a very similar interface to the driver (steering
wheel, brake and accelerator petals, etc). Any driver can immediately drive any auto. Yet, the
different autos behave differently when that interface is exercised. For example, one may accel-
erate more quickly than another, even for the same depression of the accelerator petal.

Polymorphism is achieved in the context of inheritance. A superclass may have a method that is
redefined (specialized) within different subclasses. Polymorphism means that we might “pretend”
that an object is an instance of its superclass, but the actual behavior is determined by the sub-
class. Polymorphism is so useful because it allows programs to be constructed around abstract
views of objects; later, when instances of objects drawn from subclasses are substituted, new
behaviors result without any other program modification.

Example: A classVehicle would probably include aaccelerate() method that causes it to
gain speed. As shown in Figure 4., subclagses , Bicycle , andBoat would implement
accelerate() differently. For example, thauto andBicycle might simply release the
brake if theVvehicle is coasting downhill, whereasBoat doesn’t even have a brake. A
object-oriented application might deal wifehicle ’s without even knowing about their sub-
classes. When ¥ehicle is accelerated, the object instance will substitute its own specialized
behavior depending on its subclass. New subclasseshidfle ’'s can be added without any
other changes to the program.

Object Interfaces

The class of an object comprises both an interface and an implementation, and it is valuable to
separate these two aspects. A client is concerned with a server’s interface, but not its implementa-
tion. For this purpose, anterface definition language (IDB-simpler than a system program-

Page 6 8/18/99

[1 Copyright 1999 University of California

interface Form interface Printable

iSA() print()

...

..

interface Schedule_A interface Form_1040

Figure 5. An illustrate of interfaces and multiple interface inheritance.

ming language—describes object interfaces but without introducing implementation issues. One
advantage of an IDL is that it is simpler, because it deliberately ignores all implementation issues.
(IDLs are also important in distributed object management, see Chapter 16.) One IDL is defined
in the CORBA standard discussed in Chapter 16 (see the book homepage for a description of this
IDL with examples).

Example: The interfaces of classes sharing “is a” relationships are illustrated in Figure 5.. Each
interface is outlined with a dotted line (to distinguish it from a class) and labeled with some rep-
resentative methods and attributes. Interface inheritance—denoted by arrows from a derived
interface to its base interface—simply means that the derived interface has all the methods and
attributes of the base, plus more methods and attributes that further specialize it. Also illustrated
is multiple interface inheritance, since interfatax_form inherits two base interfaceSprm
and Printable , acquiring all the methods and attributes of basashedule_ A and
Form_1040 are each more specializ€dx_form ’s that inherit all its methods and attributes.

This example also illustrates polymorphism. Suppose there is a repository thaFstorss

and a print server that arranges to printRalhtable ’'s. Then anyTax_form , including
Schedule_A andForm_1040 and any others defined in the future, can be stored or printed
without modifying either the repository or print server.

Events

"Complex Protocols in OOP" (Section on page 1) illustrated how a more complicated publish-
subscribe protocol can be implemented using request-response as a building block. Publish-sub-
scribe protocols are so useful and widely used that component technology typically supports this
in the infrastructure.

A component and its interface are illustrated in Figure 6.. At this level of detail (before enhance-
ments like component metadata are considered) the component interface looks very similar to an
object interface. The primary difference is that the component specifically pubéskats

Events are used, albeit on @h hocbasis, in object systems. An event is an action or occurrence
that a component publishes for the benefit of other components. Other components, at their

Page 7 8/18/99

[1 Copyright 1999 University of California

Component

Method 1
Method 2

Method 3

Event 1

Event 2

Attributes

Figure 6. External view of a software component. There is no internal view.

option, subscribe to notifications of the event (similar to information management, see "User
Awareness: Notifications" on page 41).

A typical form of specification would be an attribute crossing a threshold.

Example: Suppose a component models a bank account. Examples of event specifications might
be “with the latest deposit, the balance in the account has just exceeded $1,000,000” or “with
the latest withdrawal the balance would have been negative so it was rejected”.

When an event occurs, components that have subscribed are notified. This works as follows:

» The component metadata describes any available events, and the component interface pro-
vides a mechanism to subscribe to any event.

» A subscribing component provides a parameterization (the threshold on the account balance,
for instance), but does not have to identify itself because the infrastructure takes care of that.

» During execution, a component notes all events for which there is one or more active sub-
scription, and notifies all the subscribers whenever that event occurs.

With events, a client doesn’t have to repeatedly query a server, but need subscribe only once.
Events are useful in many contexts, but particularly business applications as illustrated by the fol-
lowing example.

Example: A bank credit department may ask to be notified whenever a particular customer’s
bank balance falls below zero, because that customer is deemed a collection problem. A market-
ing department may ask for notification whenever the weekly sales of a particular product falls
below some threshold to trigger a reevaluation of marketing plans. A inventory department may
desire notification is a supplier ‘s production is affected by some natural disaster, so that manu-
facturing forecasts can be adjusted. These and similar cases are easily handled by events, if the
designers of relevant components have anticipated the need.

Page 8 8/18/99

[1 Copyright 1999 University of California

Discussion

D1 Discuss the use of “part of” and “is a” relationships in biology, the social sciences, the
economy and commerce.

D2 Discuss the use of polymorphism in physical-world products and services. Is this a
valuable way to think about the organization of products and services, or not?

Examples
The ides of inheritance and polymorphism can be illustrated by a couple examples.

Address Book

Suppose the goal is to implement an address book as an adjunct to an email application (see
"Remote Conferencing with Shared Workspace" (Section 2.2.3 on page 23)). The address book
manages a list of email recipients, keeping information like name, address, phone number, and a
convenient nickname for each recipient. As shown in Figure 7., an object with intentace

can be used to manage the information associated with each recipient. Since the name, address,
and phone number are widely used in many applications, they are each represented by their own
objects, whose interfaces are calldéame Address , andPhone_number respectively. Those

three interfaces are inherited—with the nickname and email address added—to \igzltlythe
interface. This illustrates something that has not be discussed previonsliiple inheritance

Entry inherits three interfaces, which simply means that it gathers together the attributes and
methods of all those interfaces, and then adds its own specialized attributes and methods.

The address book has to managistaof entries—another generic function that can be shared by
many applications. Thus, as shown in Figure 8., the inteMddess_book can inherit d.ist

How OOP Contains Complexity

It is useful to review how OOP assists in containing complexity:

» Modularity,. OOP encourages the decomposition of the application into modules, namely
objects. Hierarchical decomposition is supported (albeit rather crudely) by encapsulation
of other objects by holding exclusive references.

* Interface Each object has an interface that allows other objects to interact with it in|jwell-
defined and well-documented ways.

» Abstraction The programmer can carefully choose what is displayed at an object |inter-
face, and choose to hide internal details.

» EncapsulationNothing internal to an object is accessible from the outside except what is
explicitly embodied in the methods at the interface. Implementation details can be
changed without affecting interaction with other objects.

» Class An economy of expression—which can reduce implementation effort—is achjeved
by implementing a class once and instantiating it many times. Inheritance enhances econ-
omy of expression by implementing once what is common among a set of related cl|asses.

» PolymorphismSubclasses can be hidden from a client object, which sees only the super-
class interface, allowing different subclass behaviors to be automatically substituted.

Page 9 8/18/99

[1 Copyright 1999 University of California

Address
............................ Phone_number
Name & street_addr R R,
e, . city i { local_number
: first_name H state i i city_code
middle_name H country i country_code
last_name mail_code i dial_prefix

nickname
email_address

...

number_of_objects
add()
iterate_current()
delete()
current()

...

entry_with_lastname?()
: entry_with_nickname?()

Address_book

Figure 8. The address book object interface can be inherited from a generic list inter-

interface. AList exploits polymorphism to manage a list of many objects (with literally any
interface). TheAddress_book adds methods specific to the email application, such as searches
for specific last names and nicknames.

Shopping Cart

In the shopping cart object architecture, hestomer_info and Entry_info instances are
encapsulated iEntry_list . The latter object maintains references to those objects which it
does not share with others. All inquires fr@ustomer_interface are handled by appropriate
methods oEntry_list , which may in turn consult its encapsulated objects.

Entry_list inherits the samiist class as thaddress_book , adding methods specific to the

Page 10 8/18/99

[1 Copyright 1999 University of California

shopping cart like searching on authors or book titles.

Review

Although the method invocation directly supports a request-response protocol, simpler or more
complex protocols can be realized using the message. Common examples include the send-
receive (message) and publish-subscribe (event notification).

The instances of a class are an example of an “is a” relationship, which can be hierarchical
through inheritance. Decomposition leads to a “part of” relationship.

State is the collective data stored in an object, reflecting all the information it keeps about its past
history. Knowledge of state is needed to predict future behavior.

Polymorphism allows the substitution of a superclass for a subclass, allowing subclasses to substi-
tute distinct behaviors.
Concepts
Object-oriented programming:
» Object: attribute, method, interface, state, and instance
* Class: instance, inheritance, and polymorphism

“is @” relationships: specialization and instantiation

“part of” relationships: hierarchical decomposition
* Events

Exercises

El. For each of the following ideas, give two examples of physical-world objects that illustrate the idea,
and tell how they illustrate the idea.

State

The instantiation type of “is a” relation
The specialization type of “is a” relation
“part of” relation

oo o p

e. Polymorphism

E2. Even though the objects in each collection below undoubtedly don't belong to the same class, describe
briefly what the objects have in common that could be captured in a superclass.

a. Tax form, driver's license, house

b. Tennis racket, baseball bat, shovel

c. Box of chocolates, floppy disk, automobile trunk
d. Physician, nurse, patient

E3. Define an inheritance hierarchy for any one of the following. Try to define classes that would be
reusable.

a. Vending machines

b. Textbooks in a campus bookstore
c. Classes in a university

d. Food items in a cafeteria

Page 11 8/18/99

[1 Copyright 1999 University of California

E4. Suppose that you were writing software using objects to model or represent the following real-world
objects. What would constitute their state?

a. Television set
b. Automobile

c. Bank account
d. Flashlight

E5. Develop a hierarchy of “is a” relationships for transportation vehicles. Pay particular attention to the
number of levels of hierarchy you believe is appropriate to maximize the economy of expression.
Include at least 8-10 different classes of vehicles in your hierarchy. Briefly justify the features of your
design.

E6. Create an “is a” hierarchy for each of the following. Your hierarchy doesn't need to be complete, but
should have representative examples.

a. Ways for two people to communicate
b. Methods of payment in commercial transactions

E7. The point of this problem is that one object can participate simultaneously in more than one “is a” and
“part of” hierarchies. lllustrate this, by creating some partial hierarchies including this object, for any
two of the following:

a. A house in San Francisco
b. A rock in the Berkeley hills
c. A painting in The Louvre art museum in Paris
E8. Give three examples not mentioned in the chapter of polymorphism in real-world objects.

E9. Assume you define software classes designed to serve as proxies for electronic pianos, trumpets, and
drums in a “digital band” application. Describe briefly how polymorphism would be valuable in defining
these classes and their superclass “musical instruments”.

E10. State how polymorphism could be used to advantage for objects modeling each of the following
combinations of classes.

a. Radio, television, and book
b. Warehouse, bookstore, automobile dealership
c. Piano, trumpet, drum

E11. For any one of the following examples, design a set of classes and an interface specification for each
class, taking advantage of inheritance and polymorphism. There is no need to design a detailed interface,
but rather it suffices to illustrate how inheritance and polymorphism are helpful.

a. An inventory of books maintained by the on-line book merchant books4u.com described in "On-
line Book Selling" (Section 3.1.2 on page 55)

b. Different forms of monetary value used in "On-line Stock Trading" (Section 3.1.3 on page 57) to
represent money

c. Different types of flowers in the catalog of the "Floral Delivery Service" (Section 3.1.4 on page
58)

Page 12 8/18/99

